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AFIT/DS/ENS/95-01 

Abstract 

Where should a researcher conduct experiments to provide training data for a multilayer 

perceptron? This question is investigated and a statistically-based method for optimally 

selecting experimental design points for multilayer perceptrons is introduced. Specifically, a 

criterion is developed based on the size of an estimated confidence ellipsoid for the weights in 

the multilayer perceptron. This criterion is minimized over a set of exemplars to find optimal 

design points. Until now, only graphical and heuristic algorithms were available. 

Initially, single output networks are examined in which the multilayer perceptron is 

viewed as a univariate nonlinear model. An example is used to demonstrate the superiority 

of optimally selected design points over randomly chosen points and points chosen in a grid 

pattern. Also, two measures are successfully used to rank the design points in terms of their 

importance. Due to the dense interconnectivity of multilayer perceptrons, locating design 

points can be computationally complex. Therefore, two methods are presented as avenues 

to significantly reduce complexity—a distributed linear feedthrough network structure and a 

weight subset method. 

Next, multiple output networks are examined with the multilayer perceptron viewed as 

a multivariate nonlinear model. The criterion for selecting design points in this framework 

becomes more complex and a simplifying technique is employed to judiciously choose desired 

outputs of the network to produce uncorrelated actual outputs. 

Finally, the methods described above are integrated into a comprehensive procedure 

and are tested on two applications dealing with aircraft survivability. The single output 

methodology is demonstrated on the classification of the performance of armor piercing 

incendiary projectiles striking composite materials and the multiple output methodology is 

applied to a seven-class problem relating time and stress to the performance of the projectiles. 

In both cases, simulating the indicated experiments produced a superior multilayer perceptron. 

xu 



Selecting Optimal Experiments 

for 

Feedforward Multilayer Perceptrons 

/. Introduction 

The objective of this research is to develop a cohesive strategy for selecting design 

points for experimentation so as to develop accurate multilayer perceptron classifiers. Only 

recently have neural networks come to the forefront of discriminant analysis methods. Neural 

networks, and more specifically multilayer perceptrons, have the advantage of learning their 

optimal parameters and are simple to apply once these parameters are found. In addition, 

multilayer perceptrons have very general functional forms that can be expanded or contracted 

to suit the current application. A further advantage in a discrimination setting is that multilayer 

perceptrons allow for the formation of nonlinear decision regions, including disjoint regions. 

Finally, there is the appealing quality of the "brain-like" structure of neural networks that 

has caused attention to be turned to these relatively new classifiers. Although Rosenblatt 

developed the perceptron as early as 1957, a paper published in 1969 by Minsky and Pappert 

highlighting the inadequacies of the perceptron stifled neural network research for several 

years. It wasn't until 1982 that, to a large degree, Hopfield sparked a resurgence in this area 

[32, 55]. 

Optimal experimental design seeks to select vectors from some region of operability 

such that the design defined by these vectors is in some sense optimal. Most often this 

problem consists of developing some sensible criterion based on an assumed model and using 

this criterion to obtain a design. In contrast to the neural network arena, primary research on 

optimal experimental design was performed over thirty years ago. In 1943 Wald proposed the 
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determinant criterion and in 1959, Box and Lucas demonstrated how this criterion could be 

applied to nonlinear models [58]. 

This research explores the synthesis of these two topic areas and, where possible exploits 

the flexibility and dense interConnectivity of multilayer perceptrons. The following example 

sets the stage for the research covered in succeeding chapters: 

A researcher (chemist, engineer, bio-technician, etc.— whichever is most familiar) 
believes that a system he is investigating would be best modeled by a multilayer 
perceptron with some set of physical characteristics of the system as inputs. A 
small amount of screening data is available. The researcher wishes to perform ad- 
ditional experiments to develop the most accurate multilayer perceptron classifier 
possible. Which experiments should he perform? 

This chapter briefly outlines the importance of experimental design and introduces multilayer 

perceptrons including their structure, training methods and other practical considerations. 

The chapter concludes with a statement of dissertation research objectives and an overview of 

remaining chapters. 

1.1    Importance of Experimental Design 

The reason that experimental design is important is that "the information content of 

the data is established when the experiment is performed" and no amount of innovative data 

analysis can recover information which is not present in the data [66]. Figure 1 shows 

how experimental design fits into the overall process of developing multilayer perceptron 

classifiers. First, an initial model is proposed and experiments performed with data collected. 

Using this initial model, the multilayer perceptron is trained using the collected data. Next, 

the multilayer perceptron is evaluated in terms of existing data to determine first whether the 

model is appropriate and second, whether further data is required. If the model continues to 

be appropriate, an experimental design scheme is employed and used to collect further data. 

Notice that the form of the multilayer perceptron influences the experimental design. 
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Figure 1.    Experimental Design in the Overall Development of Multilayer Perception Models 



Figure 2. Single Perceptron 
Reprinted from [55] 

1.2   Feedforward Multilayer Perceptrons 

1.2.1 Structure. Figure 2 shows a single perceptron. (Appendix D lists the symbols 

used.) Data feeds into the perceptron's input nodes numbered 1 to n with input values x\ to 

xn and the Wi on each branch of the perceptron weight the inputs. The procedure sums across 

the weighted inputs, adds a bias term, and transforms the sum so that the activation y of the 

perceptron is: 
n 

y =/[(5>,-*.-) + fl (D 
! = 1 

The bias is an additional node whose input is 1. Therefore, the bias times the weight 

connecting the bias (£) is a constant. The nonlinear transformation /[•] most often takes the 



form of a sigmoid: 

fta) =  (2) 
v   '      1 + e~Q 

For each input, the perception outputs a single value that signifies the classification of 

the input [55]. Training the perception to classify inputs consists of finding the weights that 

produce outputs near certain desired values. Most often, desired outputs are set to 1 or 0 to 

denote class membership. 

The single layer perception does not allow for discrimination between classes that are 

not hyperplane separable [43]. Beginning in the 1980's, researchers developed methods for 

layering the single perception to allow for complex, nonlinear boundaries between classes 

[57]. Figure 3 shows a two layer perception. Cybenko has shown "only one hidden layer is 

sufficient for any arbitrary transformation, given enough nodes" [55]. 

The input layer of a multilayer perception will have as many nodes as there are features 

plus an additional node for the bias term. The output layer will normally have one node for 

every class of outputs. Consequently, the structure of multilayer perceptions varies only in the 

number of hidden layers and the number of nodes within each of these hidden layers. Although 

methods have been suggested to determine the best structure [17, 31, 33, 38], as Ruck states: 

"Rigorous mathematical techniques have not been developed to determine the appropriate 

number of hidden layers or the number of nodes in those layers for a given problem" [57]. 

For the most part, a trial and error approach is taken. 

1.2.2 Training. Training algorithms are rules by which the perception will update 

weights (learn) as the user presents data. Backpropagation is the most prevalent method for 

updating the weights in a multilayer perception. This algorithm is a gradient descent method 

for training the weights in a multilayer perception while mmimizing the mean squared error 

between the outputs of the network and the desired outputs [40]. 

In a multilayer perception, the data is introduced to the input layer and propagated 

through the network in a feedforward manner. Comparing the output of the perception with 
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the desired classification yields an error term used to compute a correction for the weights 

[55]. Listed below is the backpropagation training method. 

Backpropagation Training 

1. Initialize weights and biases to small random values. 

2. Present training input and desired outputs. 

3. Calculate outputs. 

4. Adapt weights and biases according to 

wtj = wIj + VÖjXi + <*{w7j - wlf) (3) 

where Wij is the weight from node i to node j in the next layer, Xi is the output 
of node i, and Sj is the error associated with node j. 77 is the learning rate and 
a is the momentum rate (for example constants of .35 and .7 respectively). 
wfj is the new weight value and w~j is the old weight value. w~f is the 
value of the weight before the last update. Thresholds are adapted similarly 
where X{ is replaced by +1 if the bias is added to the weighted sum and -1 if 
it is subtracted. The Sj are defined as follows: 

6.=  ziO--zi){di~ zi)     for outPutnode3 (4) 
J      Xj(l — Xj) Y,k hwjk   for hidden node j 

where dj is the desired output for output node j and Zj is the actual output. 
For hidden nodes the 8k are the errors for the layers above. 

Often the input vectors must be normalized in some fashion so that no one feature 

dominates the classification process. Normalization can be accomplished by scaling the 

features in each vector to values between 0 and 1 based on the range of the values of the 

features in the training set. 

Available data is randomly assigned to one of three sets [28]: 

• The Training Set: This set of feature vectors is presented to the multilayer perceptron 
for training. These vectors contain the desired classification of the feature vector. 



• The Test Set: The test set is used to test the accuracy of training while training is 
ongoing. After each epoch (i.e., each complete presentation of the training set), each 
test set vector is presented to the network and classified. This classification is then 
compared to the desired classification, and an error computed. These test vectors act as 
controls for determining when the accuracy of the perceptron is at an acceptable level. 

• The Validation Set: After the multilayer perceptron is considered optimally trained, the 
validation set vectors are presented, classified and that classification compared to the 
true classification of each vector. This set acts as a verification of the performance of 
the classifier since its vectors are not directly used during the classifier's development. 

The output error is observed during the training of the multilayer perceptron to judge 

the accuracy of the discriminator at any epoch. The output error (£o) is defined as: 

£o-t't(rNr1\(dt-zt)\ (5) 
1 = 1 s=l 

where r is the number of output nodes (also the number of classes), N is the number of 

exemplars (observations) in the set of interest, dff is the desired output for the ith node when 

the 5th exemplar is presented, and z\ is the actual output of node i for the sth exemplar. In 

other words, the output error is the average absolute amount that the output of the network 

differed from the desired output. Classification error (£c) is also used to judge the accuracy 

of the multilayer perceptron during training. Classification error is defined as the percentage 

of the vectors in the data set of interest that are classified incorrectly. If us is defined as the 

true classification of feature vector s and Cos as the actual classification of feature vector s and 

let 

*M = 
1   if u) € Class i 

(6) 
0   otherwise 

then 
    N 

£c = 100 l-tf-1 ££(/.V) ■*(*')) 
i=l s=l 

(7) 

The method for training a multilayer perceptron is illustrated in Figure 3. First, the 

initial weights in the perceptron are randomized within a range typically between -0.5 and 0.5. 

This is done because even under identical learning conditions, random initial weights can lead 
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to results that differ from one training session to another. Next, an epoch begins by presenting 

a randomly selected training exemplar. The order that training vectors are presented is also 

randomized. Using the current values of the weights, the output of the network is calculated. 

The next step is to compare the actual output to the desired output. 

Based on this comparison, all the weights in the network are updated. Feature vectors 

from the training set are presented to the network until all vectors have been presented once. 

The weights are adjusted after each training vector presentation. After all the training vectors 

have been used, the weights are fixed and the vectors in the test set are presented. So and 

Sc are calculated. If the rates are acceptable, the multilayer perceptron is considered trained 

and the validation set is presented for a final analysis of the error rate. If the error rates 

are unacceptable, then another epoch begins and all the training data is presented again with 

weights being updated after the introduction of every training vector. It is not unusual for 

thousands of epochs, i.e., presentations of the training data, to be necessary to achieve an 

acceptable error rate. 

When several runs of the same network architecture require comparison, typically an 

average error rate S is calculated. A confidence interval around the true mean error provides 

information as to the variability of the result. For a reasonably large number of runs, M, 

the £-distribution can be used for confidence interval estimation. In this case, the confidence 

interval for the expected error rate takes the form 

S — tti_9L-M-l\—7=  < ß < S + t(i_2..M-l)     ,  (8) 

where t(i_«;M-i) is determined by the t-distribution for confidence coefficient 1 — a and 

M - 1 degrees of freedom and [42:343,374] 

M 

S = M~1Y.£i (9) 
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Figure 4. Training Procedure for Multilayer Perceptron 
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Table 1. Hypothesis Test for Equality of Means 

Hn 

Hn 

Test Statistic 

Rejection Region 
Assumptions 

ßi = Vi 

v\ ¥" v-2 

T —    fi-g? 
/IT 

V  M1 M2 

A/ Mt+M2-2 

\t\>t (l-f;M1+M2-2) 

Sij are independent samples 
from normal distributions with a\ = a\ 

M 

s> = (M - I)-1 £(S - f )- (10) 

This confidence interval is based on the assumption that the sample has been randomly selected 

from a normal population. It is appropriate for samples of any size and works well as long as 

departures from normality are not excessive [42:373]. 

When methodologies require comparison, one typically makes several runs of the 

multilayer perceptron for each of the methods. A hypothesis test can be conducted to determine 

whether the average error rates for the methods are significantly different. Let Af,- be the 

number of runs for method i (i = 1,2), S{ be the average error rate for method i, m be the 

true error rate and define 
Mi 

(11) 
Mi 

3=1 

Mi 

s* = (Mt -1)-1 £(£i - etf 
3=1 

Then, the test for comparing two means is listed in Table 1 [42:457]. 

(12) 
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Figure 5 summarizes a procedure which can be used to iterate through the possible 

multilayer perceptron architectures and settings to arrive at an optimal network. Initially, the 

number of middle nodes, the learning rate and the momentum rate are set to values that are 

suggested by the discrimination problem and by the user's experience. The network is trained 

and the number of epochs increased until the minimum test set error is observed. The number 

of middle nodes is increased as long as the minimum test set error continues to decrease, or 

fewer number of epochs are required to achieve the minimum. Next, the number of middle 

nodes is fixed and the learning and momentum rates are tested over an applicable range. This 

range of learning and momentum rates may depend on the order of the discrimination problem 

(i.e., how many feature inputs/exemplars are involved) and the observed behavior of the error 

as these rates are changed. After the multilayer perceptron is tested over the range of learning 

and momentum rates, the rates yielding the lowest test set error rate are chosen. 

1.3   Feature Extraction—Saliency Metrics 

1.3.1 Background. When employing neural networks of any type, one objective is 

to limit the number of input features. Devijver and Kittler cite "the curse of dimensionality" 

as the primary reason for limiting these features [18]. The dilemma is that as the number of 

features increases, the number of training vectors required in the training set also increases. 

Foley states that the ratio of training vectors per class to the feature size should be greater than 

three. He claims that satisfying this condition ensures that the test set error rate is close to 

the true error rate [24]. Work by Cover reinforces the result that more features require more 

training data [16]. 

Intuitively an analyst would like to include only those features that make a significant 

contribution to the network. When designing a classifier, the features that provide information 

should be included and those that provide little information should not be included as inputs to 

the network. To insure optimal feature extraction, exhaustive enumeration of the feature sub- 
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sets could be applied [18]. In a situation with very many variables, this would be impractical. 

Ruck develops a measure for ranking features called a "saliency metric" [56]. To produce the 

saliency measure, "the sensitivity of the network's output to its input is used to rank the input 

feature's usefulness" [56]. The saliency measure allows for the examination of the inputs as 

they relate to the output values of the multilayer perception without examining every subset. 

The application of the saliency measure begins with the calculation of the derivative 

of the output with respect to a specific input. When the sigmoid nonlinearity is used for a 

network with a single hidden layer, this derivative is 

where ZJ is the output of node j in the output layer, wfj is the weight connecting the hidden 

layer with the output layer, wx
ki is the weight connecting the input layer with the hidden layer 

and 6} = x} (1 - x}) where x} is the output of node i in layer 1. (Reference [57] for a detailed 

derivation.) Each of the pieces that make up the saliency measure are illustrated in Figure 3. 

From the equation above, it is apparent that the derivative depends on the inputs to the network 

as well as the weights within the network. 

Ideally, the feature space would be sampled over the entire range of possible values. 

Letting R be the number of sampling points for each input and letting n be the number of 

features, then the total number of derivative calculations is Rn which may be excessively 

large. Ruck suggests that instead of sampling all points, each feature should be sampled 

over its range while the other feature inputs are held constant at their actual values ignoring 

interactions among the inputs. If there are N training vectors, this method results in RNn 

derivative calculations [57]. 
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Let i\)m be the vector of R uniformly spaced points covering the range of the mth input 

feature, then the ith component, iß™ can be defined as 

V»r=minxm + (i-l) -—       i = l,...,R (14) 
it — 1 

where min a;m (max xm) is the minimum (maximum) value of xm taken over all N training 

vectors. Finally, Ruck's saliency measure for feature input k is defined as 

N     n     R     r       o 
OZ3 uM') 

S=l k = l 1 = 1 j = l 

xfcW w) (15) 

where N is the number of training vectors; n is the number of features; R is the number of 

uniformly spaced points covering the range of each input feature; r is the number of output 

classes; the vector x£W is the vector xs with its k\h component replaced by i>\ and (x*W ? w) 

indicates that the derivative is evaluated with the feature vector x£W and the final estimate of 

the trained network weight parameter w [53]. 

A simpler method of determining the relative significance of the input features once the 

network has been trained has been suggested by Tarr [63]. He proposes the following alternate 

saliency measure for a feature input k: 

A* = IK)2 <16) 
i 

Which is simply the sum of the squared weights between the input layer and the first hidden 

layer. 

To understand the relationship between these two saliency measures, it is necessary to 

examine a simplified form of Ruck's saliency measure. The simplified saliency measure, A^, 

does not examine points in the feature space other than points given in the training and test 
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data. 

Ä* = EEI^MI en) 

where X is the set of all exemplars in the training set and j as before is the index for the output 

nodes. 

Steppe has shown that this simplified measure can be bounded above by an expression 

containing a constant vector, independent of the feature under study and a term dependent on 

the weights connected to the feature under study. 

Ä* < Kin (18) 

where | wjj. | is an 1 x m vector of the absolute values of the weights connecting input feature 

k to middle nodes 1 through m and II is a m x 1 vector of constants for middle nodes 1 to 

m. The vector of constants, II, is identical for each feature being examined. Therefore, an 

examination of some norm of |w^ | provides a measure of saliency for feature k [61]. 

1.3.2 Determining Salient Features. Currently, the saliency measures discussed are 

calculated and features are included subjectively, based on rank order according to the av- 

erage saliency measures over several training cycles. A method is needed which takes into 

consideration the saliency of a feature relative to the saliency of a known irrelevant feature. 

To establish a working procedure for determining which features are significant, a noise vari- 

able is included as a feature input along with the original inputs to represent an absolutely 

insignificant piece of information. Because all continuous features were normalized between 

zero and one, the added noise was taken as random samples from a uniform (0,1) distribution. 

The procedure for determining significant feature inputs when a noise feature is present is 

developed by Belue and Bauer and outlined below [7]. 
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Determining Significant Features with Injected Noise 

1. Introduce a noise feature to the original set of feature vectors. 

2. Train the network. 

3. Compute the saliency of all features (using either A or A). 

4. Repeat steps 2 and 3 at least 30 times (with weights being randomly initialized and 
training and test sets being randomly selected at the beginning of each training cycle). 

5. Assume the average saliency of noise is normally distributed and find the upper one- 
sided (a x 100) percent confidence interval for the mean value of the saliency of 
noise. 

6. Choose only those features whose average saliency value falls outside this confidence 
interval. 

7. Retrain the network with the salient features. 

Steppe observed that Bonferroni hypothesis testing is appropriate since a "family" of 

tests are being performed, rather than an individual hypothesis test. In addition, she noted that 

since the saliency observations are paired and dependent, a paired t-test should be used [61]. 

1.4 Research Objectives 

The objective of this research is to 

1. Develop sampling methods for single output multilayer perceptrons to select design 

points for experimentation so as to best estimate the multilayer perceptron parameters. 

2. Develop sampling methods for multiple output multilayer perceptrons to select design 

points for experimentation so as to best estimate the multilayer perceptron parameters. 

3. Integrate the methods developed into a cohesive strategy for selecting design points. 

4. Test this strategy on practical, realistic discrimination problems. 

1.5 Research Overview 

This remainder of this dissertation is organized into four chapters. Chapter II introduces 

nonlinear regression and outlines methods for determining experimental designs for input 
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exemplars. In Chapter HE, methods for developing designs for single output multilayer 

perceptrons are presented. In Chapter IV, results are expanded to include the multiple output 

case. Finally, Chapter V presents the overall methodology and applies this methodology to 

two "real world" problems. 
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//. Experimental Design for Neural Networks 

"The basic problem of experimental design is deciding what pattern of design points will 

reveal aspects of the situation of interest" [8]. Functions met in practice usually show fairly 

smooth relationships. The simpler the relationship, the fewer the number of experimental 

points needed to explore it. For example, if it were certain that the relationship between a 

response rj and a single variable x could be represented in a straight line, in the absence of 

experimental error, only two points would be required to determine it exactly. 

Once design points are selected and experiments completed, the results are used to 

model the system of interest. "Response surface methodology comprises a group of statistical 

techniques for empirical model building and model exploitation" [19:1]. In classical response 

surface methodology, model selection often becomes a difficult problem as the analyst attempts 

to find a model that adequately represents the functional relationship of the variables and the 

response. In the case of a multilayer perceptron, the form of the model has been decided 

through the architecture of the network. Therefore, a well-defined method of finding the 

parameters of the proposed model is already established. In a multilayer perceptron setting, 

the remaining problem is to select the design points in the feature space that allow us to best 

estimate these parameters. Box and Hunter assert the need for optimally selecting design 

points: 

If experiments are not carefully planned, the experimental points may be so 
situated in the space of the variables that the estimates which can be obtained 
for the parameter 9 are not only imprecise but also highly correlated. Once the 
data are collected, a statistical analysis, no matter how elaborate, can do nothing 
to remedy this unfortunate situation. However, by the selection of suitable 
experimental design in advance, these shortcomings can often be overcome. 
[12:114] 
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2.1    Nonlinear Regression 

A survey of nonlinear regression is necessary when examining the statistical properties 

of multilayer perceptions since they are a specialized form of a nonlinear model. According 

to White, "backpropagation and nonlinear regression can be viewed as alternative statistical 

approaches to solving the least squares problem" [68:85]. Neter and Wasserman define 

nonlinear regression models as "models that are not linear in the parameters and cannot be 

made so by transformation" [47:550]. 

Least-squares estimation may be used to determine the parameters in a nonlinear regres- 

sion model. Suppose there are JV observations of (x, y) where x is a vector of observations 

on n variables and y is the univariate response. (Appendix D lists the symbols used.) Then let 

yt = /(x,-; 0*) + e{    i = l,...,JV (19) 

where E[e{] = 0, x, is a n x 1 vector, 0* is the p x 1 vector of true (but unknown) parameters, 

and e,- are independently and identically distributed (Lid) with variance a2. The least-squares 

estimate of 0*, denoted by 0, minimizes the error sum of squares, i.e., 

0 = axgmin[S(0)] (20) 

where 
TV 

SW = £[y.--/(x.-;*)]2 (21) 
i=l 

When each /(x,-; 0) is differentiable with respect to 0, 0 will satisfy 

~dS{0) 

d0t 
. =0      t=l,2,...,p (22) 
0 
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We will use the following notation: 

fi(e) = f(xi;0) 

f(Ö) = (/i(ö),/a(ö),--»Mö))3 

(23) 

(24) 

and the N x p matrix of first partials is defined as 

am   j(dfi(ey 
dd1 F-(e) - -^r -i\   det 

(25) 

Using this notation, 

Then Equation 22 implies 

S(0) = [y-f(0)]r[y-f(0)] (26) 

V7        Hß))dm 
2>«' - JAe))-Q^ 

u=l 

0      t = l,2,...,p (27) 

J0=0 

These equations are commonly referred to as the normal equations for a nonlinear regression 

model. 

Seber and Wild provide the following theorem: 

Theorem 1 Given appropriate regularity conditions, then for large N, 

2ri-i\ (0_0*)~iVp(O,<72C (28) 

where C = FTF = F.T(6*)F.(9*) [59:24]. 
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It should be noted that the normality of the residuals (e) is not required for this result. 

lfF. = F.(0), then an estimate for C is given by C = F.TF. An estimate for a2 is given by 

,2      S(0) 
P = TT^ (29) 

JM — p 

Gallant presents the regularity conditions used to arrive at these results [25:19-21]. In 

summary, the conditions are: 

1. The response function /(x,-; 9) must be continuous in the argument (xt-; 9) and the first 

and second derivatives must be continuous in (xt-; 9). 

2. The sequence of input vectors behave properly as N tends to infinity. Proper behavior 

is obtained when observations are chosen randomly or are the replication of a fixed set 

of points. 

3. Identification Condition: 

jim 4 £[/(**; 0)-/(**;0*)]2 (30) 
N—>oo iv      ; s=l 

has a unique minimum at 9 = 9*. 

4. Rank Qualification: 

lim ±F.T(0*)F.(0*) (31) 

is nonsingular. 

In classical nonlinear regression, the estimated parameters 9 are determined numerically. 

A common algorithm is the Gauss-Newton method which makes use of a linear Taylor series 

expansion. When multilayer perceptrons are used, the parameters 9 are estimated using 

the backpropagation algorithm described in Chapter I. (In that context, the notation for the 

parameters is w.) 

22 



To this point, only single response models have been considered. A natural extension 

is to replace the single response y,- by an r x 1 vector of responses y*. This model can be 

expressed as 

yi = f(xt;ö) + ei      i = l,2,...,N (32) 

where the e» are assumed to be i.i.d. with mean 0 and variance-covariance matrix £. In this 

case, a least-squares estimate of 0* can be obtained by minimizing 

N 

I 
i-1 

T(0) = E[y,- - f (*; B)]^-1 & - f (*; 0)] (33) 

with respect to 0 [59:531]. Since the relationship between the responses is typically unknown, 

some estimate of £ is usually required in order to estimate the true parameter values 0*. The 

elements of £ can be estimated with the least-squares estimate of 0* as: 

1  T (Juv^-euev      u,v = 1,2, ...,r 
n 

(34) 

where ej = y^ — f(j\0) (denoting the the jth response model by the superscript j) and 

£ = {&uv}. The problem of estimating £ to find optimal parameters is not applicable 

when multilayer perceptrons are used because the backpropagation training method does not 

consider the variance-covariance matrix. 

Define the Kronecker product of A (an m x m matrix) and B (an n x n matrix) as: 

A®B 

anB ai2B    ■ ■      O-lmB 

a2\B a22B    ■ •    a2m.B 

am\B Öm2-B     • ttmm-LJ 

(35) 
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Then, an approximation of the variance-covariance matrix of the parameters analogous to 

a2{F.TF.)~l in the single response case is given by the p x p matrix W~l where [59:532]: 

W=^FT{Ö)[±-l®IN]F.{Ö) 

and F.(0) is the Nr x p matrix of first partials defined as 

(36) 

F.{6) 
df(fl) 

MO) 
F.2{9) 

F.r{6) 

wheref(0) = (f1(ö),f2(Ö),,..,fJV(ö))r, f-(0) = f(x,-;0) and F., = {(^|g% is the 

N x p matrix of derivatives for the jth model. 

In the discussion above, f (x,-; 6) is assumed to be the true model. However, in many 

situations one has no knowledge of the true model and f(x8;ö) is selected on empirical 

grounds from a range of possible models [59:572]. For the multilayer perceptrons used in 

this research, the overall functional form of the model is fixed (two layers of weights and 

sigmoidal activations) and only the appropriate number of hidden nodes must be chosen. 

White describes conditions under which one can form a consistent estimator of C, the 

variance-covariance matrix of the parameters, even when the model has been misspecified. 

White calls this estimator specification robust [68:259-288]. The practical application of 

this C can have disadvantages [61]. In this research, it will be assumed that a multilayer 

perceptron with the minimum number of hidden nodes required to achieve a predetermined 

level of accuracy is an "appropriate" model. Due to the problems associated with determining 
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a specification robust C, any inaccuracies due to misspecification of the model will be ignored 

and "appropriate" multilayer perceptron architectures will be used. 

2.2   Experimental Designs in Nonlinear Situations. 

Box and Lucas present a method for the design of experiments in nonlinear situations. 

Suppose that some response -q is a known function 

rj = /(xi, x2,...,xn;91,02,...,9p) = /(x; 9) (37) 

of n variables whose levels are denoted by the elements xu..., xu, ■ ■ ■, xn of the vector x 

and of p parameters 0i,...,Ot,...,Op elements of the vector 0, and that this function is not 

necessarily linear in either the variables or the parameters [13]. 

The goal here is to select TV trials such that they can be expected to provide results from 

which the p parameters can be estimated with high accuracy. Box and Lucas define the design 

matrix as an N x n matrix D. The 5th row of this matrix provides the levels of the n variables 

at which the response is to be observed in the 5 th trial, hi practice, the choice of design 

points is restricted either by physical or experimental constraints, hi general, there will exist 

a "region of operability," 71, in the x -space which defines the area where experiments can be 

performed, hi some cases, the experimental region can be defined by a series of inequalities 

in the x's such as 

Xfc(min) < Xk < Xi(max)   k = 1,2,..., n (38) 

TZ may, however, be more complicated [13]. 

Box and Lucas denote the response observed at the 5th set of experimental conditions 

by ys and suppose that 

E(ys) = Vs = f(xs;9) (39) 
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E[(ys-Vs)(yu-Vu)} = < (40) 

and 

a2   s = u 

0     s^u 

where, 5,u = l,2,...,7V and, in general, a2 is unknown. Let the true values of the parameters 

be denoted by 6*, 6%,..., 6*, the elements of the vector 0*. The partial derivatives of the 

response function with respect to the tth parameter 9t for the 5th set of experimental conditions, 

taken at the point 6*, is denoted by 

d/(xs;0) 

d6t 6=6* 
s = l,...,JV;< = l,. (41) 

and the N x p matrix of these derivatives is F.{0). 

Now, the least squares estimates 6 obtained by minimizing the sum of squares 

N 
J2{ys-f(^6)Y (42) 
s=l 

and given by the normal equations 

.8=1 ÖÖ* 6>=ö 
= 0      * = 1,2,. (43) 

have a variance-covariance matrix which is approximated by a2{F.TF.)~l. Box and Lucas 

proceed by attempting to choose D so that the determinant \(F.TF.)~l\ is made as small as 

possible [13]. That is, 

D = arg min 
°xeft 

(FT(X;9)F.(X;6)) 
-l 

(44) 

where X is a set of N data points. 

Atkinson and Hunter explain this criterion by examining the boundary of the region 

with confidence coefficient 1 - a in the space of parameters. This boundary is formed by the 
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values of 9 which satisfy the relationship 

(0 - 9)TFTF.{6 - 0) = s2pFa{P, v) (45) 

where Fa(p, v) is the a ■ 100 percent point of the ^-distribution with p and v degrees of 

freedom and s2 is an independent estimate of the error variance a2 based on v degrees of 

freedom [1]. 

The boundary of such a region is hyper-ellipsoidal with the volume depending on | F.T F. \ 

such that the volume will decrease as the value of the determinant increases; hence, the ap- 

proach recommended by Box and Lucas is to minimize \(F.TF.)~1\ [1]. See Appendix A. 1 for 

an explanation of the proportionality of volume and \F.TF.\. The minimization of | (F.TF.)_11 

is directly related to the minimization of the generalized variance which is defined as the deter- 

minant of the variance-covariance matrix. Appendix A.2 shows this relationship. In Box and 

Lucas's 1959 paper, they give a detailed explanation of the relationship between the sample 

space, the solution locus within the sample space, and the parameter space. They conclude 

that in the nonlinear situation, minimization of [ (F.TF.)~l | can be treated as in the linear case 

depending on the degree of nonlinearity of the function [13]. Notice that the criterion can 

be simplified for the special case where the number of experiments is equal to the number of 

parameters. F. is a square p x p matrix and \F.TF.\ = \F.\2. It is sufficient in this case to 

maximize |F.|. 

A simplex is defined as the geometrical figure consisting, in TV dimensions, of N + 1 

vertices and all their interconnecting line segments, polygonal faces, etc. In two dimensions, 

a simplex is a triangle [51]. Atkinson and Hunter state that in the p-dimensional i^.-space that 

the value of \F. | is proportional to the volume of the simplex formed by the origin and the p 

experimental points. Therefore, the goal is also to maximize the volume of this simplex. See 

Appendix A.3 for further explanation. 
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The efficiency of the different possible designs depends on the matrix F. with elements 

equal to the values of the derivatives of the response function with respect to the parameters 

at 0 = 0*. The derivatives can only be independent of the values actually taken by the 

parameters if the response function is linear. For nonlinear response functions the values of 

the derivatives, and therefore the efficiency of the design, depend on the actual values of the 

parameters. If the goal is to design an effective experiment, then assumptions must be made 

about the values of the parameters in advance. Here, Box and Lucas assume that preliminary 

values of the parameters 0 are available and proceed as if these were the true quantities [13]. 

A simple example illustrates the method. Let 

a 
T) = -—^— [exp(-02£i) - exp(-ö1x1)] (46) 

u\ — t)2 

The problem is to choose a set of values xsi,s = 1,2,..., N, at which to observe rj so that 

from these observations 0i and 92 can be estimated as accurately as possible (allowing for 

experimental error in the observations). In this example, the design matrix D would consist 

of a single column whose N entries are the values xn,...,xsi,..., xpn at which 77 is to be 

observed and 0 contains the two elements 0\ and 62. 

Suppose two design points xn and x2X are required. Given preliminary guesses 0\,02, 

which values of xlt and x21 should be chosen so that the best estimates will be available for 

9i and #2? The values xxl and x2i should be chosen to maximize the determinant \F.TF.\. 

In this case, since the number of trials is equal to the number of parameters 

\F TF.\ = \F.\2 (47) 
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and minimization of \F. |2 is equivalent to the minimization of \F. 

\F.\ = 
a/(*n;fl) 8f(xn;0) 

901 902 

df(x21;Q) 8f(x21;0) 
90! 902 

(48) 

If the preliminary guesses are 

ÖJ = 0.7,  92 = 0.2 (49) 

then the values of xxx = 1.23 and x2i = 6.86 maximize the determinant and these are the 

desired design points. 

Although an analytic solution was possible for this example, numerical methods must 

be employed as the size and complexity of the problem increases. Well-defined nonlinear 

optimization methods are numerous. Reklaitis et dl. list several direct search methods such as 

the simplex search method, the Hooke-Jeeves pattern search method and Powell's conjugate 

direction method. Gradient-based methods are also available, such as Newton's method, 

quasi-Newton methods and the conjugate gradient method [54]. 

Atkinson and Hunter extend the method of Box and Lucas to include cases where 

N, the number of experiments, is greater than p, the number of parameters. They also 

establish conditions under which replications of p experiments form an optimal design for N 

experiments when N is a multiple of p [1]. 

2.3   Sequential Designs in Nonlinear Situations 

The method described above determines the design points as a group, before the ex- 

periments are conducted. Given that the observations have been made at N0 design points, a 

sequential strategy chooses the next N points in some optimal fashion. This strategy may be 

superior to the "all-at-once" approach since the best selection of the experimental conditions 
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for nonlinear models depends on the values of the parameters themselves.  The theory for 

non-sequential designs may be established by setting N0 = 0. 

A sequential method assumes the results of N0 experiments are available in planning 

the (N0 + iV)th experiment. Box and Hunter discuss how to add points one at a time by 

maximizing the peak of the posterior distribution of 9 based on N0 + N points [12]. Using 

a uniform prior for 9 and various approximations, they showed that this criterion leads to 

maximizing \F.T(9)F.(9)\ as before, but with respect to just XJV0+I, • • • ,*N0+N- Their 

results are extended to the case where 9 has a multivariate normal prior by Draper and Hunter 

[21]. 

For the sake of illustration, assume N = 1, i.e., additional points are introduced one 

at a time. Let f .{No+1) = a/(xjVji; )T- Then for N0 + 1 observations, \C{No+1)\ is to be 

maximized where 

\CiNo+1)\   =      I    X''KVJ    I    I    "V^    I (50) 

=   \FT(9)F.(9) + f.{No+1)LjNo+1)\ 

=     \C(No) + f-(Ar0+l)f-(iV0+i)| 

=     lC(iVo)|(l+f-fjV0+l)C'(^o)f-(^o+l)) (51) 

See Appendix B for details on this development. Since |C(iv0)| does not involve xw0+i, the 

above criterion reduces to maximizing f •fAr0+i)C(7]0)f -(JV0+I) with respect to xjv0+i- 

The parameter vector can be estimated by 9(No) after N0 observations and updated to 

0(ivo+i) after observation N0 + l. It can be shown that when 9(No) is close to 9*, the design 

criteria is also equivalent to finding X]v0+i to maximize f .^vo+1)C("^o)f .(Ar0+1) which may 

be interpreted as maximizing the asymptotic variance of the prediction /(XJV0+I; 9\No+1)) 

[59:258]. 
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Although these sequential methods may be superior in some nonlinear regression set- 

tings, there may be problems when applying the methods to multilayer perceptrons. The 

principal problem is that parameters must be re-estimated after each set of N observations. 

If TV is small, repeated re-estimation will be required and the multilayer perceptron training 

may be excessive. 

2.4   Design of Experiments in Multi-response Situations. 

To draw inferences about parameters in multi-response estimation, one often uses a 

Bayesian formulation. Box and Draper [10] establish Bayesian regions for parameters in 

multi-response situations. These regions, which Box and Tiao called highest posterior density 

(h.p.d.) regions, play a role parallel to that played by confidence regions in sampling theory 

analysis. To investigate these regions, define the quantities 

No 

s=l 

and suppose N0 sets of observations 

yj = {yu,y2s,---yrS)     s = l,2,...,N0 (53) 

have already been obtained.   Then, since the N0 set of observations are independent, the 

likelihood is 

where A = S"1 = {aij} = {a^-}"1 [10]. 
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Since little is known a priori about the values of the parameters, a locally uniform prior 

distribution is used [10:356] so that 

p(0)d9 oc dB (55) 

Then the posterior distribution for 6 after N0 observations is proportional to 

PNo(0\<Tij,y)d8 (56) 

According to Draper and Hunter, this posterior distribution can be used as the prior distribution 

to determine the posterior distribution after N further observations are made. The new 

posterior distribution for 6 after N0 + N observations is proportional to 

PNo+N(OW\y)dB = (2*)-*W+^A|*<*»+JV>exp j-^EE^^j (57) 

with the upper summation limits of Vij now extending to iVo + N. 

The goal, then, is to select the N observations in such a way that the posterior density 

(Equation 57) obtained after N0 + N observations is maximized with respect to 6 and with 

respect to the N observations to be chosen. Of course, from a Bayesian point of view, all the 

information concerning the parameters B is contained in the posterior distribution after the 

observations are obtained. Therefore, the goal is altered to achieve the best possible posterior 

distribution by proper choice of design before the observations have actually been obtained 

[20:528]. 

Assume that for a region in the 0-space sufficiently close to the maximum likelihood 

estimates 9 that the following holds: 

/,(xs; 0) = /,(xs; 9) + jjBt - Öt)/-!?      t = 1,..., r; * = 1,..., tf        (58) 
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where 

/ 
(*) = 
is 

dfi{x,;0) 

dOt 6=9 

Letting, 

£« = Vis - /i(xs; 0) 

(59) 

(60) 

it follows that one can write, correct to second order in 6, 

N 

£ £ **»« = £ £ °13 E Si-*. + ££(*- *)T {*''>■?>•,•} (*-»)    («) 
i=l j=l s=l =1 i=i J=I j=i 

There are no terms linear in (6 — 6) due to the definition of 9 as the maximum likelihood 

estimate. 

Draper and Hunter state in their development that after performing the appropriate 

normalization and using Equation 61 in Equation 57, 

PN0+N(0\<rii,y) = (2*)-t>\D\teXp{-±{9-Ö)TD(0-d) (62) 

where 

»=i i=i 
(63) 

By definition, maximization with respect to 6 occurs when 0 = 6, evaluated after N0 + N 

observations. It thus remains to choose the design points so that the determinant 

\D\ EE^-f^ 
t=l j=l 

(64) 

is maximized in the case where the atJ are known [20]. 

M. J. Box develops a similar criterion for the case when one is interested in only a 

subset of the parameters with S known, but possibly non-constant [14]. Wijesinha and Khuri 
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extended these results by presenting the sequential construction of optimal designs when the 

variance-covariance matrix of the responses £ is unknown [69]. 

MJ. Box and Draper [15] rely on results from Box and Draper [10] and Draper and 

Hunter [20] to derive a design point criterion for non-sequential multi-response design of 

experiments when S is unknown. Box and Draper derive the distribution of 0 and give 

p(0\y) = C\v{ 2JV (65) 

where 

C = J Vij\->Nd0 
-l 

(66) 

is the normalizing constant.    Parameter estimation can be accomplished by minimizing 

\v{j \~2N. This criterion for parameter estimation chooses 

... that value 0 of 0 for which the posterior density is a maximum. This maximum 
posterior density is a function of the experimental settings adopted, so that if some 
or all of the experimental settings have not yet been selected, they can be chosen 
so as to maximize the maximum of the posterior density with respect to 0. 
[15:17-18] 

In order to get a useful design criterion, second order approximations to the posterior 

density are used. MJ. Box and Draper estimate p(0\y) correct to second order in (0 — 0) by 

p*(0\y) = Ckexp {-1(0 - 0)TA{0 - 0)} (67) 

where k is a constant and A = Y,l=i Ej=i vljF.jF.j with 

TV 

N Yl IVis ~ /i(xs; 0)   Vjs - /j(x,; 0) 
s=l 

(68) 

and {v*i} = {i>ij} l for data sets with unknown variance-covariance matrices [15]. 
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As before, it remains to choose design points so that the determinant 

\D\ 
i=l j=l 

(69) 

is maximized. According to Seber and Wild, vtj is the maximum-likelihood estimator of S_1 

[59:582]. Further, it is intuitively appealing that the unknown variance-covariance elements 

are estimated by their natural estimators—^ times the sums of squares and cross products of 

the difference between observed and modeled responses [15]. Since, in the design stage, the 

residuals of the unperformed experiments are unknown, all N0 data vectors from completed 

experiments should be used to estimate the variance-covariance elements. 

2.5   Discrimination Between Specified Models 

To this point, the goal has been to choose design points to best estimate the parameters of 

the chosen model. If, instead, the goal is to choose design points to best discriminate between 

two models, different techniques are required. Box and Hill developed an approach that 

supposes that N0 observations have already been taken (at least enough to initially estimate 

the parameters) and considers where best to put the (iVo + l)st for maximum discrimination 

between the models. The (N0 + l)st observation is chosen at levels which will maximize the 

expected decrease in entropy from the iVoth to the (N0 + l)st experiment [11]. 

Box and Hill's method extends to more than two models. They demonstrate an example 

in which the simplest model is the truth model and all other models are generalizations of the 

simple model containing more parameters. One would expect the entropy measure to have 

difficulty choosing between the models. However, their criterion tended toward selection of 

the simplest model [11]. These results indicate that designing an experiment with correctly 

chosen points may be a way to choose a parsimonious nonlinear model. 
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2.6    Classical Optimality Criteria 

The previous sections outlined design of experiments methods in which the determinant 

of the estimated variance-covariance matrix is minimized (called a D-optimal criterion). 

According to Mitchell [44], D-optimality is good in many respects 

1. Low variance for the parameters 

2. Low correlations among parameters 

3. Low maximum variance of estimated responses 

The D-criterion, as discussed in previous sections is equivalent to minimizing the determinant 

of the asymptotic estimate of the variance-covariance matrix. In addition, the determinant is 

proportional to the volume of the asymptotic confidence ellipsoid. 

There are other possible measures. According to Pukelsheim, "the ultimate purpose 

of any optimality criterion is to measure 'largeness' of a nonnegative definite s x s matrix 

C" [52:135]. Table 2 shows the most often used measures. The D-criterion is a measure 

of region size alone, whereas the A-criterion and the E-criterion measure size and sphericity 

[9:491]. The A-criterion is especially appealing if the parameters have definite physical 

meaning [52:137]. The E-criterion minimizes the maximum variance and requires a method 

of determining eigenvalues. The final criterion—the trace—is by itself "rather meaningless" 

[52:138]. Yet, T-optimahty can be useful if accompanied by further conditions. It appears 

in the literature that this criteria has been used almost exclusively for linear designs. One 

important result in design theory is the general equivalence theorem which links D- and 

G-optimality [36]. 
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Table 2. Optimality Criteria 

D-Optimality Determinant Criterion D = KJF/JF.)-1! 

A-Optimality Average-Variance Criterion A = trW'F.)-1] 
E-Optimality Smallest-Eigenvalue Criterion E = max \{ 

Aj- are the eigenvalues of (F^F.)'1 

T-Optimality Trace Criterion T = [tr(F.'J'JF'.)]"1 

G-Optimality Prediction Variance Criterion G = maxx6fi[f .a,(x)(F.'J,F.)_1f-(x)] 

2.7   Choosing Training Vectors for Multilayer Perceptrons 

The literature reviewed in this chapter so far has been from a large body of "classical" 

nonlinear regression sources. Published research on designing experiments specifically for 

multilayer perceptrons is much sparser. Several related topics are reviewed in this section. 

MacKay derives a criterion that measures how useful a data point is expected to be. He 

suggests using the criterion as a guide to selecting points for what he calls "active learning." 

His strategy centers around maximizing the expected change in mean marginal entropy of a 

distribution over w for points in the feature space [41]. 

Baum embeds the idea of queries in a neural network training algorithm. In a query, 

the algorithm supplies an exemplar and is told the classification of the vector by an oracle. 

Using examples from a training set, the algorithm determines where to query in order to gain 

information on separating hyperplanes. Baum claims that his algorithm is quite efficient in 

the number of queries that it uses and in the amount of time required to train [3]. 

Hwang et al. propose a query-based approach that samples on and near the current 

decision boundaries. Boundaries are generated by a network inversion algorithm and gradients 

are calculated for boundary points. Using the gradient information, conjugate pairs are 

generated. A pair consists of two points lying on opposite sides of the line passing through 
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the boundary point and perpendicular to the boundary surface, with their distances to the 

corresponding boundary point equal to l/|gradient| [34]. 

MacKay argues that the strategies of Hwang and Baum are "human-designed strategies 

and it is not clear what objective function if any they optimize" [41:728]. Further, he criticizes 

Hwang's method for the following reasons: 

• "If we have already sampled a great deal on one particular boundary then we do not 

gain useful information by repeatedly sampling there either, because the location of the 

boundary has already been established!" 

• "A strategy that samples only near existing boundaries is not likely to make new 

discoveries." 

• "To be efficient, a strategy should take into account how influential a datum will be" 

[41]. 

Atlas et al. propose a method of selectively sampling data from regions in the domain 

that are unknown based on information from previous batches of samples. The novelty in their 

approach is that the points selected to train on are determined using two multilayer perceptrons 

in parallel. Both networks are trained with known examples and with random "background" 

patterns. One network is trained to classify the background patterns as positive and the other 

is trained to classify the background patterns as negative. The region of uncertainty is then 

"captured" by taking the symmetric difference of the outputs of the two networks [2]. 

None of the works outlined in this section employ the statistically based D-optimality 

criterion. The reason for this omission may stem from the large number of parameters used in 

the multilayer perceptron. Another reason may be that in the past neural network practitioners 

were rarely involved in the collection of training data.  However, as the field matures and 
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experimenters themselves use the networks, choosing optimal design points will become 

increasingly important. 

2.8   Chapter Summary 

This chapter has introduced experimental design methods. The procedure developed by 

Box and Lucas is key to the research presented in this document. The central idea behind their 

procedure is the minimization of a criterion based on the volume of the confidence ellipsoid. 

The extension of the univariate criterion to a multivariate criterion is also an important concept 

which will be explored in Chapter IV. Finally, the equation obtained for augmenting an existing 

design (Equation 51) will be used extensively in subsequent chapters. 

The next chapter puts into practice the univariate methods and tailors them specifi- 

cally for multilayer perceptrons. A procedure for ranking design points is developed and 

simplifications to the basic method are introduced. 
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III. Design of Experiments for Single Output Multilayer Perceptrons 

This chapter investigates the design of experiments for multilayer perceptrons with a 

single output. The research and theoretical results are based on the use of a multilayer percep- 

tron with a single layer of middle nodes and sigmoidal activations at the middle and output 

nodes. Additionally, backpropagation was used to obtain weights (train) for all multilayer 

perceptrons used. Chapter I provides details. 

Two-class discrimination problems require a single output in a multilayer perceptron. 

A vector is classified as Class 1 if the output is less than 0.5 and as Class 2 if the output is 

greater than 0.5. Networks with a single output correspond to nonlinear regression models 

with a single output. It is in this arena that much of the literature on the design of experiments 

is centered. 

In this chapter, the Box and Lucas method for obtaining D-optimal designs is explored 

further. Next, maximization routines which are essential to the design method are explored. 

Results are then presented on both a "simple" linearly separable discrimination problem and a 

more complex nonlinearly separable discrimination problem. The development and testing of 

a ranking scheme for a set of design points is given next. Attempts to reduce the complexity 

of the determination of design points are introduced, and finally the sensitivity of the method 

is examined. 

3.1    Introduction 

3.1.1 A Further Look at D-Optimally. To look at the effect that maximizing the 

determinant \F.TF.\ has on the choice of design points, consider the case in which there are 

just two parameters. Let 

C   =   FTF. (70) 
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Cll      Ci2 

c21      C22 

and 

c-1  = "c" c12 ' 

c21 c22 

1 C22 -C12 

c\ -C21 Cll 

(71) 

The terms c" are proportional to the variances of the estimated parameters 0* and cu'(i ^ j) 

proportional to the covariances. The criterion is to minimize the absolute value of |C_11. For 

the two parameter case 

|C-1| = c11c22-2c12 (72) 

Considering the case where there is no correlation between the estimates, then it is desirable to 

make c22 and c11 as small as possible. This corresponds to choosing design points to minimize 

the variance of 9\ and 02. 

If a correlation between 0i and 92 exists, then since C_1 is positive definite, |C_1| 

is positive and cxlc22 — 2c12 > 0 and cuc22 > 2c12. Therefore, minimizing cnc22 infers 

minimizing c12 = c21 which are the parameter covariances. In summary, the criterion being 

used will tend to pick out a set of design points D which will minimize the variance of the 

individual parameters and minimize the covariance between the parameters. 

3.1.2 Notation. To facilitate a multilayer perceptron specific application, further no- 

tation is required. Typically, the parameters in a multilayer perceptron are called weights and 

the set of all weights denoted w. Since there is no natural ordering for these weights, an 

ordering will be established here. The weights below the hidden layer will be listed first with 
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all the weights emanating from an input node listed together. Then the weights above the 

hidden layer will be listed with the weights emanating from a hidden node listed together. So, 

w   =   {w\1,w\2,...,w\m,w\1,w\2,...,w\m,...,wl
nm,(\,(\, 

tl        2 2 2        2 2 2 2      tl   tl t2\T   /no\ 

where n is the number of inputs (dimension of the input vector), m is the number of middle 

nodes, r is the number of outputs (in this chapter r = 1), and Q are the weights connected to 

the bias elements for the /th layer. The dimension of this weight vector is given by 

p = (n + l)ra + (m + l)r (74) 

The input vectors will continue to be denoted xs, s = 1,...,N. The nonlinear re- 

gression responses are called outputs in the multilayer perception arena and will be denoted 

z(xs; w) = (z{, ...,Zj,...,z*) where zs- is the jth output node's value for the 5th input 

vector. For the single output multilayer perceptron, the subscript j will be replaced by 1. 

The N x p matrix of first partials becomes 

F,(w) = {t|}       s = l,...,N;t=l,...,p (75) 

where 

wt = < 
Wil.t-mfm^ fort<(n + l)m T^l.*-m(r^l-i) 
w2 r     t     11 1([     t     n  t) ,  m      for (n + l)m < t < {n + l)m + (m + 1) 

(76) 

and \a\ is the smallest integer greater than a. Then for lower layer weights, 

\ = z[{\ - z[)wlxY{l - x}')x'k (77) 
ki 
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where x}s is the activation of the ith middle node given the input vector s and xs
k is the &th 

element of the input vector s. Similarly for upper layer weights, 

dwl = 4il - zl)xY (78) 

Note that in order to calculate F.(w), w (or some estimate of it) must be known. An 

initial estimate w is obtained by training a multilayer perceptron on existing data vectors. 

Once w is determined, then F.(w) = F. can be formed. A second function of this initial data 

set is to determine the appropriate network architecture. Steppe develops methods for feature 

and model selection which can be employed [61]. 

Using multilayer perceptron notation, the calculation of F. has been established. What 

remains is the maximization of \F. |, which will be covered in the next section. 

3.2   Methods of Maximization 

The criterion for determining experimental design points given above requires maxi- 

mization of the determinant \F.\ or \F.TF.\. Methods for maximizing this determinant vary 

depending on whether the feature space is continuous or discrete. A continuous feature space 

allows for the selection of any n-dimensional vector in the region of operability (R) as a de- 

sign point. In contrast, a discrete feature space allows only for the selection of n-dimensional 

vectors within some set of feasible points. 

3.2.1 Continuous Feature Space—Powell's Method. Powell's maximization method 

is employed in this research for finding the optimal design points in the case of a continuous 

feature space [50, 54, 51, 65]. Powell's method is a zero-order method meaning that only 

evaluation of the original function is used to determine the maximum. The gradient information 
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necessary for higher-order methods is available but, it is in a very complicated form. It is 

assumed in this research that no gradient information is available. 

According to Vanderplaats, Powell's method (including its subsequent modifications) 

is one of the most efficient and reliable of the zero-order methods [65]. Powell's method 

is based on the concept of conjugate directions. Given annxn symmetric matrix H, the 

directions S^\ S^2\ ..., S^r\ r < n are said to be H conjugate if the directions are linearly 

independent and [54:92] 

(Si)THSj = 0     i^j (79) 

The significance of conjugacy is that given a quadratic function, the function will be maximized 

in n or fewer conjugate search directions. 

Powell's method begins by searching in the n coordinate directions, S^\ i = 1,..., n 

where each search updates the location vector X. Having completed the n unidirectional 

searches, anew search direction is created by connecting the first and last design points. This 

(n + l)st search direction is conjugate to the previous n directions. The search information 

is typically stored in a matrix H (The matrix H is chosen by convention because the matrix 

approximates the Hessian matrix). H begins as an identity matrix. The columns of H represent 

the unidirectional search vectors S^\ After finding the maximum in any direction, the S^ in 

matrix H is replaced by otiS^ where the maximum is obtained. The conjugate direction is 

created as 
n 

5(n+l)  =\paj5« (80) 

i=l 

which is the sum of the columns of H. This direction is searched to find an+1. Each column 

of H is shifted once to the left and an+iS'(n+1) is stored in column n. This provides a new 

H matrix containing n directions to start the entire search process over [65]. The search 

continues until the function effectively stops increasing. 
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Powell's method breaks down in two situations: 

• If some search direction gains no improvement 

• If after a few iterations the search directions become parallel either due to roundoff 

errors or because the function is non-quadratic 

According to Vanderplaats, the simplest and most effective way to deal with these problems is 

to restart the process with the coordinate directions whenever the process slows down[65:86]. 

Reklaitis et al. state that if the function to be maximized is quadratic and has a maximum, 

then this maximum will be reached in exactly n loops. If the function is not quadratic, then 

more loops are required. They go on to say that if the function is not quadratic, the method 

will "converge to a local minimum [maximum] and will do this at a superlinear rate" [54:96]. 

To implement Powell's method, a convergence check and a test to ensure linear inde- 

pendence must be inserted. As implemented in Numerical Recipes [51], the code for Powell's 

algorithm includes calls to a subroutine which brackets the maximum, a subroutine which per- 

forms the line maximization in each of the search directions, and a subroutine which performs 

the function evaluation. 

As described above, Powell's method is an unconstrained maximization algorithm. 

Maximization of | F. \ requires maximization within some region of operability, K, as described 

in Chapter n. It is assumed that all data sets are normalized so that each feature input is in the 

range [0,1]. The Powell algorithm was modified so that the design points chosen to maximize 

\F. | were in this range. Due to the randomness inherent in this algorithm, multiple runs were 

accomplished and the run producing the maximum value of the determinant is used. 

3.2.2 Discrete Feature Space—Discrete Exchange Algorithm. Nearly all discrete al- 

gorithms are based upon "the principles of optimal augmentation and/or reduction of an 

existing design" [46]. Mitchell's method for maximizing \F.TF.\ based specifically on the 
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construction of D-optimal experimental designs is one such algorithm [44]. He assumes a lin- 

ear model. However, with the linearization of a given nonlinear model, the same development 

applies. Mitchell's algorithm—DETMAX—exchanges design points in the following way: 

Starting with a randomly chosen TV run design, the initial set of TV runs is 
improved by 

1. adding an (N + l)st run, chosen for the maximum possible increase in 
\F.TF.\ 

2. removing that run which results in the minimum possible decrease in 
\F.TF.\ 

What remains to complete the algorithm is the establishment of some criterion to judge 

the change in \F.TF. | when a single design point is added or removed. Mitchell cites Dykstra 

as having developed the theory for augmenting experimental data to maximize the required 

determinant and presents the following theorem [44] 

Theorem 2 Let X be the "matrix of independent variables" corresponding to an initial 

design. If a run at the point xa is added to the initial design, the new matrix of independent 

variables is 

X = 
X 

The following relationship between |XTX| and |XTX| can be shown 

(81) 

XJX| = IX'XKl + x^X)-^) (82) 

In the case of a linearized nonlinear model, the result becomes 

\FTF.\ = \FTF.\(1 + f T(x0)(JP
T

JP.)-1f.(xa)) (83) 
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with 

F. 
F.= (84) 

_ f .(xa) 

Then, to make \F.TF.\ as large as possible given the current design, one must choose xa so 

that f .T(xa)(F.TJP.)_1f .(x0) is as large as possible. Similarly, given an N + 1 run design, 

one chooses an xa for removal by making f .T(xa)(F.TF.)_1f .(xa) as small as possible. 

In summary, the algorithm begins with a random N run design and adds the vector 

from the feasible set with the largest value of f .r(xa)(F.TF.)_1f .(xa) resulting in an N + 1 

run design. Then, the value of (F.TF.)~l is recalculated for the TV + 1 run design and the 

vector from the design with the smallest value of f .T(xa)(F.TF.)_1f .(xa) is removed. If 

one considered all possible subsets of design points of size N that could be formed from K 

feasible exemplars, 
K\ 

(85) 
N\(K-N)\ 

subsets would be examined.   Applying the discrete criterion will significantly reduce this 

number. Section 3.3.5 discusses the number of iterations required for a sample problem. 

Mitchell's original code for this algorithm was not available, so the algorithm was 

coded using descriptions from his article "An Algorithm for the Construction of D-Optimal 

Experimental Designs" [44]. 

3.3   Results 

3.3.1 Linearly Separable Continuous Feature Space, hi order to validate the applica- 

bility of this approach, a small problem was needed. Figure 6 shows the true linear separator 

(the "truth model") and the training data used. Two dimensional inputs were used so that 

the effects of the design method could be shown graphically. A multilayer perceptron with a 

single hidden node was trained and the weights were recorded. These weights represent the 
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Figure 6. Linearly Separable Classification Problem 

initial weight vector (w) that is required to determine optimal design points. Also shown in 

Figure 6 is the decision surface for the trained network. 

A multilayer perception with a single hidden node and two inputs uses five weights. 

Hence, best exemplars at which to run five future experiments were chosen. It is assumed that 

all data has been normalized to values between 0 and 1 so that the search for design points 

will be constrained to values between 0 and 1, i.e., 0 < xi < 1, 0 < x2 < 1. Powell's 

algorithm was used to maximize the required determinant and obtain the points at which the 

five future experiments should be conducted. Figure 7 shows the new design points. Since 

the truth model is known, the design points are simply classified according to this model. The 

multilayer perception was trained again with these five exemplars added to the training set. 

The resulting boundary is also shown in Figure 7. 
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Figure 7. Linearly Separable Problem—Optimal Design Points 

For purposes of comparison, the original multilayer perceptron was also trained with 

an additional five points chosen randomly. Since for this problem the decision surfaces can be 

seen, five points were chosen near the class boundaries to represent possible "user selected" 

experiments. These user-selected points were chosen at equal intervals on the xi axis near 

the true separator. The resulting output error for each of these training sessions is shown in 

Figure 8. The lines in this figure represent the output error at each epoch averaged over 30 

training runs. Output error is used here vice classification error due to the simplicity of the 

classification problem. Since all of the methods demonstrated nearly perfect classification 

accuracy, differences in performance could only be discerned by using output error. 

3.3.2 Research Methodology. For subsequent examples, the design point method 

will be compared to using randomly selected points and points arranged in a grid. Figure 9 

illustrates the research procedure. First, a multilayer perceptron is trained with an initial data 
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Figure 8. Linearly Separable Problem—Average Output Error Comparisons (30 Runs) 
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Figure 9. Research Method 

set (I™11) to obtain preliminary weights (w). Using these weights, the design point method 

is used to determine new points where data should be gathered (XNEW). Then, the multilayer 

perceptron is trained with both data sets (I™ + XNEW) to produce the final weight vector 

Using randomly selected points requires no initial data set. However, for fair com- 

parisons, a multilayer perceptron is trained with the initial data set and the random data set 

(X™n + XRANDOM) to produce the final weight vector (wRANrxM) Similarly) when using 

points chosen in a grid, the initial data set and the grided data set are combined to obtain 

wGRID. Across these three methods, the average error rate on a test set is compared to judge 

the accuracy of the resulting multilayer perceptrons. 
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Figure 10.    Nonlinearly Separable Problem—Truth Model and Original Multilayer Percep- 
tron Boundary 

3.3.3 Nonlinearly Separable Continuous Feature Space. The previous example is 

considered extremely easy for a multilayer perceptron. A more challenging discrimination 

problem is shown in Figure 10. In this example, the number of hidden nodes required to 

achieve an average classification accuracy of approximately 90 percent was eight. Inevitably, 

as the difficulty of the problem increases, the minimum number of hidden nodes increases and 

the dimensionality of the design point method increases. |JF. | is a function of pn variables 

where p is the number of parameters (here, equal to the number of design points to be chosen) 

and n is the dimensionality of the input vector. Therefore, for this classification problem, \F.\ 

is a function of 33 • 2 = 66 variables. 

The multilayer perceptron was trained with 100 randomly selected training vectors to 

obtain the initial weight vector w. Figure 10 also shows the original multilayer perceptron 

boundary defined by w. The goal is to determine the best exemplars at which to run 33 future 

52 



1 

0.9 

0.8 

0.7 

0.6 

0.4; 

0.3 

0.2 

0.1 

0 

* 
* 

Class 1 

_l L_ 

0.1 0.2        0.3        0.4        0.5        0.6        0.7        0.8        0.9 
X1 

Figure 11.   Nonlinearly Separable Problem—Design Points and Resulting Multilayer Per- 
ceptron Boundary 

experiments. Powell's algorithm was used to maximize the determinant of the 33 x 33 matrix 

P.. The resulting design points were classified according to the truth model and added to the 

training set. The multilayer perceptron was then retrained with the entire set of 133 exemplars. 

Figure 11 shows the design points and the new multilayer perceptron boundary. 

For purposes of comparison, the multilayer perceptron was also trained with 33 ran- 

domly chosen points added to the training set. In addition, the multilayer perceptron was 

trained with a training set consisting of the initial 100 vectors and 36 points from a 6 x 6 grid 

across the feature space. The resulting test set classification error averaged over 30 runs of 

the multilayer perceptron for each case is shown in Figure 12. 

Of course, the original training set of 100 vectors yielded the highest test set classification 

error (averaged over 30 runs) since one would expect that adding training vectors should only 
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increase the accuracy of the classifier. The design point method test set error rate was the 

lowest of any of the data sets. The randomly chosen set and the grid set increased the accuracy 

of the multilayer perceptron, but not to the level of the design point method. The method 

described in Section 1.2.2 was used to determine that points chosen by the design point method 

yielded significantly lower error rates than points chosen randomly and points from the grid 

(a = 0.02). 

Run-time is a serious consideration when applying methods to multilayer perceptrons. 

Many applications require large numbers of inputs and large numbers of hidden nodes resulting 

in many, many weights. Below, the calculations required for implementing Powell's method 

to select design points are examined closer. 

As stated earlier, Powell's method will converge in M loops if the function is quadratic 

and more than Äf loops if it is not. Here, J\f is the number of variables in the function to be 

maximized. F. is a function of n (the dimension of the inputs) times N (the number of design 

points required) variables. Therefore, at least nN loops of Powell's algorithm are needed. 

Within each loop of Powell's algorithm, the determinant |F.rF.| is calculated several 

times as the maximum is found in the direction of the current search. Calculation of a 

determinant using LU decomposition requires |p3 executions (each execution consists of one 

multiply and one add) for a p x p matrix. The elements of F. must be calculated each time 

Powell's algorithm requires evaluation of the determinant. Recall that the elements of F. are 

partial derivatives |^. The calculation of these derivatives requires calculation of the output 

of the multilayer perceptron for the particular exemplar under consideration. Depending on 

the size of the multilayer perceptron, this calculation could be expensive in terms of time. 

Combining the calculation of multilayer perceptron outputs, determinants, and the 

overall calculations required for Powell's algorithm, one can see that the time required to 
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obtain design points could be extensive. The example problem discussed above required 51.5 

minutes of system time (using a Sparc Sun station 5) to converge to a set of design points. 

3.3.4   Ranking. The set of 33 vectors selected for the problem above may be too large. 

The user has two choices: 

1. Re-accomplish the entire design point method selecting some lesser number of design 

points. 

2. Rank order the 33 chosen points as to their usefulness in determining the optimal 

parameter set. Two possible ranking procedures are outlined below. 

The first of these choices may require a significant amount of computation depending on the 

size of the multilayer perceptron. The benefit of the second choice is that the maximization 

(which may be numerically complex and time consuming) is performed once. Then, the 

experimenter is free to choose the number of design points needed and add other design points 

as resources permit. It may also be that the design points are required immediately with no 

time to perform the optimization again. In addition, if resources are scarce, ordering the design 

points assures that the "most important" experiments are performed first. The disadvantage 

of ranking is that a subset of the selected design points is a sub-optimal set. 

Method 1—Dot Product Ranking. The discrete design point algorithm covered in Sec- 

tion 3.2.2 suggests a method for ranking design points [44]. Recall that the algorithm chooses 
A    J A A 

a design point for inclusion from a set of feasible points if it maximizes f. (F/F.)'1?.. 

Existing design points can be ranked similarly. 

A stated earlier, choosing the exemplar that maximizes f. (F.TF.)_1f. ensures a 
A    T A A A 

maximum value of \F.TF.\. However, the quantity f. (F.TF.)"1f. has an alternative inter- 
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pretation. Given the nonlinear model y = /(x; 6) + e, let 

yo = /(xo;0) + eo (86) 

where x0 is any point in K, y0 is the true response at x0 and e0 ~ iV(0, <r2) and is independent 

ofe. An estimate of y0 is given by the fitted model as y0 = /(xo;0). The Taylor expansion is 

/(xo;Ö)«/(xo;ö)+f.^(ö-Ö) (87) 

where 

Then, 

T _ fdf(x0;d)  <9/(x0;fl) df(x0;d)\ 

yo-yo  «  j/o - /(xo; 0) - f .£(0 - 6) 

=   eo-fT(d-8) (89) 

and since 0 ~ JVp(0, <72(F.rF.)_1), 

var[y0 - #o]   «   var[e0] + var[f .£(0 - 0)] 

«   <T
a + ff

2f.g,(F.T^)-1f.o 

=   a2(l+f.g'(f,.TF.)-1f.o) (90) 

This variance of the estimated response can be calculated using 0: 

var[j/o - £o] ~ T
2
(1 + f•2'(ArF.)-1f-o) (91) 

So, choosing the exemplar x0 that maximizes f .^(F.TF.)_1f-o is equivalent to choosing the 

point at which the variance of the predicted response is a maximum [59]. 
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One might consider ranking each exemplar, x0, with f .^(FJF.)-1^ .0 using the entire 

set of design points to calculate (F.TF.). However, as shown below, this approach cannot be 

used. Without loss of generality, assume that f.%(jP.TF.)_1f .0 is evaluated at the exemplar 

corresponding to the first row of F.. The following results if F. is square and F.~i exists. 

T in -1/ in X\-li {.liF'F.y^U   =   i.10F.-\F.i)-H.0 

=    F.F.-1 

ii 
X\-l in T (F/y'F 

1   0   0   0   •••   0 

= 1 

1 

0 

0 

0 

i = i,---,p 

(92) 

Note that var[yo — yo] in this case is 2a2. Exactly the same results are obtained for the other 

exemplars used to calculate (F.TF.)_1. 

Clearly then, one cannot in all circumstances use a variance-covariance matrix estimated 

from the design points to rank that same set of design points. In this research, the variance- 

covariance matrix will be assumed equal to the identity and the following ranking measure 

established: 

M1(x) = fT(x)f.(x) (93) 

where x : 

notation, 

(xi, a;2,... xn) is the design point under consideration. In multilayer perceptron 

fTfx) 
'dz(x;w)  dz(-x;w) <9z(x;w)' 

dw\     '     du)2 dwv 
(94) 
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The exemplar in the design set having the greatest value of Mi will be ranked as best. The 

measure Mi can also be interpreted as the squared length of the gradient vector evaluated at 

x. 

Method 2—Saliency Ranking. A second method of ranking design points is suggested 

by the saliency measure introduced in Section 1.3. Once D-optimal design points have been 

selected, it makes sense to choose the points in the set which effect the greatest change in 

the output of the multilayer perceptron. The saliency measure was originally presented as 

a method of ranking features rather than ranking exemplars consisting of several features. 

dz ■ 
Therefore, the original measure will be modified. The saliency measure is based on ^. To 

find exemplars having the greatest effect on ZJ, the total change in Zj due to changes in xk 

should be maximized. This total change in ZJ may be represented by the total differential 

dz' dz' dz' 
dzj = —±dxi + • • • + -Tr-dxi + ■■■ + ^dxn (95) 

OXi OXi oxn 

and, by expanding the partial derivatives for the multilayer perceptron 

dzj = J2zi(l - zi) Z) wixli(X ~ xli)wlidxk (96) 
k i 

In this setting, total differentials are being compared between exemplars so that dxk will be 

set to some constant for all ä;. 

So far, only a single multilayer perceptron output has been considered. Including all 

outputs the following measure is defined 

x2(x) = EE 
j=l k=l 

zAl - Z
J) ZXjsK1 _ xli)wki 

j=i 

(97) 
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Table 3. Comparing Ranking Measures—Final Average Test Set Classification Errors 

Method Set Added to Training Set 
Average Test Set 

Classification Error 

Dot 
Product (.Mi) 

Ten Best Exemplars 8.68 
Ten Worst Exemplars 9.34 

Saliency 
(M2) 

Ten Best Exemplars 8.78 
Ten Worst Exemplars 10.55 

where x is the design point under consideration and current weight estimates w are used. 

Design points will be ordered according to this measure with large values corresponding to 

"good" design points. 

Initially, the 33 design points for the nonlinearly separable problem above were rank 

ordered according to Method 1. In order to judge the usefulness of the design points, ten 

vectors with the largest values of the measure were grouped as a design point set and ten 

vectors with the smallest values of the measure were grouped in a design point set. Two 

multilayer perceptrons were trained—one with the vectors with large values added to the 

training set and one with the vectors with small values added to the training set. Figure 13 

shows the design points and the value of M1 for each design point. The final classification 

error averaged over 30 runs is shown in Table 3. The difference in the average classification 

errors for the ten best and ten worst points is statistically significant. 

Next, Method 2 was used to separate the 33 design points into a "high" and "low" set 

of ten vectors each. Figure 14 shows the design points and the value of M2 for each design 

point. Figure 3 shows the average classification error for the new multilayer perceptrons. 

Again, the difference in the average classification errors is statistically significant. 
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Figure 13. Design Points and M\ 
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3.3.5 Nonlinearly Separable Discrete Feature Space. In this section, the differences 

and similarities of using a discrete as opposed to continuous feature space are demonstrated. 

The same discrimination problem used in the last section will be used here. 

Implementing the discrete exchange algorithm, 33 design points were chosen from a 

feasible set of 400 points. Approximately 30 exchanges were required in the discrete exchange 

algorithm to arrive at an optimal set. The design points are shown in Figure 15. A multilayer 

perceptron was trained using the initial training set and the 33 additional points. The resulting 

average test set classification error rate is compared to the classification error rate given a 

continuous feature space (see Section 3.3.3, Figure 12) in Figure 16. The discrete method 

is also compared to the error rate obtained when adding 33 randomly chosen points to the 

training set. Using the 30 runs of the multilayer perceptron in each case, the mean error rate 

was significantly lower for the discrete design method as compared to the random point set 

(a = 0.05). Observe that the discrete method did not improve the classification error as much 

as the continuous method. One might expect this since the discrete method allows for the 

selection of only a subset of the points available to the continuous method. 

In comparing the discrete and continuous methods, the time expended in obtaining 

the design points should also be considered. The continuous method requires considerably 

more computer processing time than the discrete method. For the problem considered here, 

the continuous method required approximately 51.5 minutes of system time (on a Sun Sparc 

station 5) while the discrete method required only 27.1 seconds of system time for one run. 

3.4   Reducing Complexity of Design Point Determination 

If multilayer perceptions with many inputs or many hidden nodes are required for 

a particular classification task, determining the design points may be difficult. As stated 

previously, the number of loops required in Powell's algorithm is a function of the dimension 
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of the input vector and the desired number of design points. Also, the determinant of the F. 

matrix is a function of the number of weights times the number of inputs. This potentially 

large number of variables presents two problems for the maximization routines: 

1. Large Number of Parameters (Multilayer Perceptron Weights) 

2. Smallness of Partial Derivatives in the F. Matrix 

Examples from the nonlinear regression literature illustrate results for much smaller problems 

than were attempted here. For example, Johnson and Nachtsheim compare algorithms for 

constructing D-optimal designs for nonlinear regression problems and only test up to n=15 

[35]. 

The nonlinearly separable discrimination problem addressed in the previous section is 

a reasonably large problem. However, the possibility of larger network structures must be 

considered. Another example problem (not shown here) with four inputs and ten hidden nodes 

required 35.93 hours of system time to find 33 design points. The value determinant for this 

example was on the order of 10-700. Clearly, some simplifications are required. 

Originally, it was thought that one of the other optimality criterion could be used to 

reduce the complexity of finding design points. For example, calculating the trace of a matrix 

is computationally less complex than calculating the determinant. However, in the specific 

case being observed here, the trace is just as computationally complex. The reason stems 

from the simplifications that are possible when using the determinant. Similar reductions 

in complexity are not possible with the other criterion. It appears that alternate forms of 

simplification are required. 

In this section, methods of simplifying the stated procedure to avoid computational 

difficulties are discussed.   First, a method to reduce the size of the required multilayer 
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perceptron (and consequently the number of weights) is presented.   Second, a simplified 

measure on only a subset of the parameters is presented. 

3.4.1 PartiallyNonlinearModels—Direct LinearFeedthrough (DLF)Networks. This 

section details a procedure to exploit linearities in a given discrimination problem. If linearities 

are present, a linear representation within the multilayer perceptron makes it possible to reduce 

the overall number of weights. This linear addition results in a Direct Linear Feedthrough 

(DLF) network. If a DLF network can be used, then it can be shown that the weights cor- 

responding to the linear part of the network have no effect on the D-optimality of a certain 

design. The result is a reduction in the dimensionality of | F. |, a simplification of the elements 

of F., and therefore, quicker convergence to design points that yield a maximum. 

3.4.1.1 Direct Linear Feedthrough (DLF) Networks. Lee and Holt suggest the 

use of direct linear feedthroughs together with the more traditional multilayer feedforward 

network [39, 27]. The direct linear feedthrough (DLF) network is shown in Figure 17. 

The DLF network is constructed by superposing the linear connections between input 

and output nodes to the standard multilayer network. If the sigmoid is no longer applied to 

the upper layer, then the output from this network structure is simply the summation of the 

output from the standard network and the linear network which is 

..total = znet + ^linear (98) 

where j indicates the jth output node and 

m 

*?* = £«>«*? + £      J = h-.-,r (99) 
i-l 
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and 
n 

^linear = ^wl
kjxk + tl      j = l,...,r (100) 

k=\ 

The I superscript indexes the linear weights. 

DLF network structure is most useful when the linear/nonlinear relationship between 

the input and output is unknown. When the functionality between the input and output is 

linear, the contribution from the nonlinear part of the DLF network will decrease until it is 

invisible to the network. When the relationship between the input and output is nonlinear, the 

linear and nonlinear pieces will work together to best model the data. 

The weights of the linear part of the network may be obtained from linear regression 

techniques and preset within the network. Lee and Holt state that this initialization method 

can shorten the training and ensure the stability of the training [39]. Even if the linear weights 

are initialized with random numbers, they will quickly adjust themselves to an approximate 

least squares solution. This phenomena is due to the fact that the gradients of the objective 

function with respect to the linear weights are much steeper than nonlinear weights. Thus, 

the linear weights are adjusted at a faster rate at the beginning of the learning process [39]. 

For this reason, it may be necessary to use different learning rates for the linear and nonlinear 

parts of the network. In addition, now that a sigmoid is no longer used on the output, it may 

also be necessary to use different learning rates for the upper and lower weights. Training 

the DLF network requires a slightly modified version of backpropagation. The DLF network 

version is derived in Appendix C. 

3.4.1.2 Designs for Partially Nonlinear Models. The advantage in using a 

DLF network becomes apparent when the number of hidden nodes required can be reduced 

by including linear connections.  When there are linear terms in any nonlinear model, the 
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design of experiments criterion is simplified. Hill discusses this simplification by defining a 

"partially nonlinear" model and stating a theorem concerning partially nonlinear models [29]. 

Definition 1 We say that a regression model ??(x, 0) is partially nonlinear if the pxl 

derivative vector f .(x, 0) —   vj*A ' can be represented as 

f.(x;0) = A(0)g(x,</>) (101) 

where A{0) is a nonsingular matrix not involving x, and g(x, <j>) is a vector of functions 

depending on x and on a subset 4> of certain of the components 0. The components of 0 

represented by 4> are those which appear nonlinearly in T?(X, 0) [29]. 

Theorem 3 Consider a partially nonlinear regression model ?;(x, 0),for which 

f.(x,0) = A(0)g(x,<£) (102) 

as in the definition above. The D-optimal design for the parameter 0 in this model depends on 

those components of0 which are in the sub-vector <f> but not on the remaining components. 

Proof: 

n 

FT(0)F.(0)   =   £f.(x,;0)fT(x8;0) (103) 
! = 1 

n 

= x:^)g(x^)gT(x^)Ar(ö) 
i=l 

=   A{9) I]g(x;;<£)gT(xi;</>) 
.J=I 

AT{0) (104) 

Therefore, 
N 

\FT(0)F.(0)\ = |A(Ö)|2|^g(x8;^)gT(x^)| (105) 
i=i 
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so that the choice o/{xi,...,x^r} to maximize \F.T(0)F.(6)\ depends on only the cj> com- 

ponents of 8 since g(x4-; <p) does not involve the other components [29]. 

For the DLF network, f .(x; 0) = Jg(x; </>) with the D-optimal design for 0 independent of 

the weights connecting the inputs to the outputs. 

So, when using a DLF network, one can use the simplification above and not include 

the parameters associated with the linear part of the model. Two benefits are realized. First, 

if there are linearities in the classification problem, the DLF network allows one to develop a 

classifier with fewer hidden nodes and fewer weights overall. Secondly, the elements of F. 

associated with the linear parts of the DLF network are very simple. If pn is the number of 

nonlinear weights and pi is the number of linear weights, then the structure of F. matrix for a 

DLF network is: 

F. DLF 

dz1 dz1 

dw2 

dz2 

9u»2 

dz?" dzPn 

dw\ dw2 

dzPn + l 

dW2 

dzPn+Pl dzpn+Fl 

9z1 

duip, 

dZ
2 

dwv 

dZP" 

Xl,Pn+l Xl,Pn+2 

X2,Pn+l X2,Pn+2 

Xl,Pn+Pl 

X2,p„+pt 

XPn,Pn+l XPn,Pn+2 X Pn,Pn+Pl 

dw„„ 

dzPn+Pl 

dw\ dw2 

XPn+1-,Pn+l XPn+i,Pn+2 

XPn+Pl,Pn+l-       XPn+Pl,Pn+2 

XPn+l,Pn+Pl 

XPn+Pl,Pn+Pl 

(106) 

This matrix is (pn +pi)x (Pn+Pi)- Note that none of the linear weights are required and that 

two of the blocks in the matrix are simply matrices of the design points. Because the sigmoid 

is no longer applied to the output, the derivatives in the F. matrix are now 

!£ - «^'(1 - *?v* (107) 
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and 
ßzs 

(See Equations 77 and 78 for the original forms of these derivatives.) 

3.4.1.3 Results—Sample Problem. Given any classification problem, some 

framework must be used for testing whether the DLF structure will yield a simplification. 

Figure 18 shows one possible method for determining whether a DLF network would be used 

and, if so, how many hidden nonlinear nodes should be used. 

This framework was used on the classification problem shown in the nonlinear problem 

of Section 3.3.3, Figure 10 to determine that the optimal structure is a DLF network with four 

hidden nodes. This network contains 20 weights. In this example, the acceptable classification 

error rate was purposely chosen high (average Sc of less than 15 percent over 30 runs). This 

was done to show that it is possible to use weights from an imperfectly trained multilayer 

perception and still obtain reasonable design points. 

Using the weights from the DLF network, design points were chosen with the matrix 

to be maximized in the form of Equation 106. The design points and the initial DLF network 

boundary are shown in Figure 19. 

These design points were added to the initial training set and the DLF network was 

retrained 30 times. The best resulting DLF network activation and boundary is shown in 

Figure 20. The average test set classification error over 30 runs improved from 13.68 percent 

(before the design points were added to the training set) to 12.14 percent (after the design points 

were added) as shown in Figure 21. This is compared with an average test set classification 

error of 14.30 for randomly selected points. 

In summary, the DLF network can be a useful tool whenever simplification of a multi- 

layer perception is required. The overall number of weights can be reduced and the activations 
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Figure 19. Design Points and Initial Decision Boundary for DLF Network 

simplified. The use of the DLF network is especially significant in the design of experiments 

arena, since the complexity of the design point method can be greatly reduced. 

3.4.2 Subsets of Parameters—Using Lower Layer Weights. A second method of 

reducing the complexity of determining design points may be to consider only a subset of 

the parameters. In a multilayer perceptron it may be possible to choose design points to best 

estimate the lower layer weights while not considering the upper layer weights. 

3.4.2.1    Optimal Designs for Subsets of Parameters. Hill and Hunter present a 

method of planning experiments to estimate a subset of the parameters in the model. Let 6 be 
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partitioned as 

e 
0i 

07 

(109) 

where öispxl.öiisgxl and contains the parameters of interest, 02 is u x 1 and contains 

those parameters of less interest. Then, let 

F.=    F.!   i   F.2 (HO) 

where F.i is N x q and F.2 is iV x u. 

Seber and Wild state that an approximate confidence region for 0\ may be written as 

{0l : (0! - 01)
1 F.{ (IN - RF.2)F.1(91 - 0J < qs'Fa(q, N - p)}        (111) 

where RF.2 = F.2{F.1'F^)-1 F.? and s2 is an estimate of the error variance a2. This region is 

based on an appropriate subset tangent-plane approximation (See Seber and Wild for details) 

[59:202-203]. Similar to the original design method, the volume of this region is dependent 

on 

l-^-i (IN — RF.2)F.I\ (112) 

such that the volume will decrease as the determinant increases. Minimizing the volume of 

the approximate confidence region leads Hill and Hunter to the following criterion where s 

denotes subset: 

A. = 1^(7-^)^1 (113) 

Hill and Hunter go on to explain that the maximization of As means that the size (as measured 

by the determinant) of the part of F.i that is orthogonal to F.2 is maximized [30]. 
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The reduction in complexity results from maximizing the determinant of a smaller 

matrix. Note that even though a matrix inversion is required, this matrix is not a full p x p 

matrix. In other words, the criterion is broken down into smaller, less complicated parts. Press 

states that LU decomposition, which is used to calculate the determinant on an N x N matrix, 

requires |iV3 matrix operations. For inverting an N x N matrix, N3 matrix operations are 

required [51:37]. Therefore, the original design point determination method requires p3 matrix 

operations (p is the total number of parameters) and the parameter subset method discussed 

here requires \q3 + r3 matrix operations (q is the number of parameters of interest and u is 

the number of parameters of less interest). Figure 22 compares the operations for the original 

method and the subset method based on the network architectures used in this chapter. Note 

that LU decomposition is performed to calculate the determinant for every function evaluation 

required by the maximization routine, so the savings realized by modifying the method is 

substantial. 

Intuition, experimentation and theory all suggest that the lower layer weights in a 

two layer network are the most important factors in the discrimination process. Intuitively, 

the lower layer weights perform the initial weighting of the input features thereby sorting 

the elements of the input vector for further weighting by succeeding layers. Touretzky and 

Pomerleau state that hidden units should really be called "learned-feature detectors" or "re- 

representational units," because the activity pattern in the hidden layer is an encoding of what 

the network thinks are the significant features of the input [64]. Gorman and Sejnowski exper- 

imented with sonar targets and drew conclusions from these experiments on the capabilities of 

the hidden layer. They say that although a hidden unit may be thought of as a feature extractor, 

the hidden units are also capable of encoding multiple features and even multiple strategies 

simultaneously [26:88]. 
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In summary, partitioning the weight vector into parameters of interest and those of less 

interest simplifies the determination of experimental design points. It seems appropriate to 

design experiments that emphasize the lower layer weights. 

3.4.2.2 An Indicator for the Subset Criterion. In which cases should the lower 

layer weights be emphasized? Clearly, an indicator is needed to signal that the subset criterion 

should be used. The original criterion, \F.TF. |, can be written 

F.iiF.2 F.iiF.2 
F.JF.,   F.JF.2 

F.lF.x   F.lF.2 

F.^F.2  F.lF.x - F.lF.2(F.lF.2)-1F.lF.1 

F.iF, F.^I-RpjF.r (114) 
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Since this indicator will be used before any design points are chosen, the values of the 

determinants will be calculated at points from the training data. If the experimenter intends 

to eventually choose 30 design points, for example, then 30 exemplars chosen randomly from 

the training set are used to calculate \F.lF.2\ and \F.\{I - Rp.2)F.i\. Replications of this 

calculation generate observations on [F.^F^l and |F.f (I - RF.2)F.I\. 

If a set of design points producing a high value of |F.f (J — RF.2 )F.I | always produces 

a high value of |F.^F.2|, it seems reasonable to assume that to maximize |F.TF.| it is 

sufficient to maximize \F.^(I — Rp.2)F.i\. An examination of the correlation of \F.^F.2\ 

and \F.J(I - RF.2)F.I\ would reveal this type of relationship. Notice, however, that the size 

of the determinant when measured at sub-optimal (random) locations in the feature space will 

be very small leading to numerical imprecision. For that reason, a log transformation will be 

used and the quantities \og(\F.2 F.2\) and log(|F.f (/ - Rp.2)F.i\) will be examined. 

One need only look at the elements of F.i and F.2 to see that it is reasonable to assume 

that \F.lF.2\ and \F.J(I — RF.2)F.I\ are related. Elements of F.2 are ^- where Wij is an 

upper layer weight, 
3z 

= z(l-z)x] (115) 

and xj is the activation of the zth hidden node. Elements of F.i are -£*- where Wki is a lower 

layer weight, 
dz 

= z{l - z)wlx}{l - x})xk (116) 
dwki 

where w^ is the weight connecting the ith hidden node to the single output node, and xk 

is the &th input. For the single output multilayer perceptron, maximizing the absolute value 

of the derivative with respect to lower layer weights is nearly equivalent to maximizing the 

absolute value of the derivative with respect to upper layer weights. The difference is the terms 

concerning x] (w^ is a constant). Given that the lower layer derivatives have been maximized, 

then it follows that the upper layer derivatives have, to some degree, been maximized. 
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In conclusion, an indicator for when the subset criterion should be used is the estimated 

correlation of log(|F.^F.2|) and log(|F.f (7 - Rp.2 )i?-i|) calculated using available training 

data. If a strong positive correlation is exhibited, then emphasizing the lower layer weights 

is indicated. It is believed, though cannot yet be proven, that this result holds for all single 

output multilayer perceptrons. 

3.4.2.3 Results—Sample Problem. The two-class problem in Figure 10 was 

used to test the parameter subset design point method. For this example, 33 design points 

were used. First, the subset indicator introduced in Section 3.4.2.2 was tested to see if the use 

of the subset criterion was indicated. Thirty sets of 33 vectors were randomly selected from 

the training set. Using these 30 observations, the estimated correlation of log(\F.2F.2\) and 

log(|F.f(7 - RF.2)F.I\) was calculated as 0.87, indicating a strong relationship between the 

determinants. The subset criterion was therefore applied. 

hi Figure 23 the design points obtained when using the entire set of weights are compared 

with those obtained by using only the weights in the lower layer. The sets of design points 

differ little in their location in the feature space. Each set of design points was added to the 

training set and an eight hidden node multilayer perception was trained 30 times for each. The 

resulting classification error on the test set is shown in Figure 24. 

Further confirmation that emphasizing the lower layer weights does not significantly 

degrade the design can be seen in Figure 25. This figure shows the average absolute values 

of the weight derivatives for the upper and lower weights. (The derivatives were calculated 

with the initial weight vector.) As stated earlier, one element of the design point criterion is 

that exemplars are chosen so as to maximize the magnitude of these derivatives. Figure 25 

shows that the lower layer weight derivatives are greater in magnitude on average than the 

upper layer weight derivatives and, therefore, have a greater effect on the the criterion. 
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Figure 23.    Original Multilayer Perceptron Boundary and Design Points for All Weights and 
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Figure 25. Average Absolute Value of Weight Derivatives 
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The results here indicate an example in which it was beneficial to emphasize the lower 

layer weights. For the two-class problems addressed in this section, it appears that the upper 

layer weights contain little information with regard to designing experiments. 

3.5   Sensitivity to Initial Data 

3.5.1 Introduction. To this point, it has been assumed that an initial weight vector w 

is available. However, the question of how sensitive the design point determination is to these 

initial weights has not been established. Box and Lucas observe that 

... in practical problems it will almost invariably be the case that some informa- 
tion is available, and this will then provide the basis of a first design ... the real 
effectiveness of the design will depend upon the reliability of the information 
upon which it is based. [13] 

The literature reveals little beyond the statement above. The accuracy or inaccuracy of a given 

weight vector stems primarily from the training data used to determine the weight vector. If 

one has a large set of existing data, the initial weights can be determined very efficiently. One 

might ask, however, that if the initial weights are known with such accuracy, then why are 

further experiments necessary? 

Suppose an initial weight vector has been obtained from an initial set of data. If an 

improvement in the accuracy of the weights is desired, then the following data manipulation 

is appropriate: 

1. Divide the set S of all existing data into two sets ST, the training set and Ss, the test 

set. 

2. Using these sets, determine the number of training epochs required, the architecture of 

the network and other multilayer perceptron settings (example, learning rate). Figure 5 
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in Chapter I provides a guide.  In addition, Steppe presents methods for model and 

feature selection [61]. 

3. Fix the multilayer perception settings and re-train the network several times. 

4. Obtain the weight vector w from the run with the lowest test set classification error. 

5. Use w to determine the design points. 

Weiss and Kulikowski discuss the trade-off that exists in choosing how many exemplars 

to allocate to the training and test sets as in step 1 above. They say "while sufficient test cases 

are the key to accurate error estimation, adequate training cases in the design of a classifier 

are also of paramount importance" [67:30]. They go on to state that the usual proportions are 

approximately a 2/3 (training set), 1/3 (test set) split. Using this partition, however, the error 

estimate is relatively pessimistic. 

When the training is being accomplished in step 3 above, there is no reason that the 

multilayer perceptron should not be trained to the highest accuracy possible. The only possible 

danger is "overlearning." Overlearning occurs when the multilayer perceptron memorizes the 

data in the training set and thereby loses its ability to generalize to unseen data. The inclusion 

of the test set in the procedure above should remedy this situation. 

3.5.2 Test Problem. Figure 26 shows the test problem that will be used to observe the 

effects of different sample sizes of initial data. This test problem further illustrates the effects 

of disjoint classes on the design point methodology. Eight hidden nodes were used. 

In this problem, the total number of initial data points available to the experimenter was 

varied between 15 and 480. From this initial data, | was allocated to the training set and | 

to the test set. For each train and test set pair, a multilayer perceptron was trained ten times 

and the run with the lowest classification error on the test set was used. The weight vector 

from that run was used to identify 33 design points. In addition, in order to adequately judge 
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Figure 26. Test Problem—Disjoint Classes 

the true accuracy of the classifier, a validation set of 500 vectors was used. Measures on this 

validation set should be viewed as very good estimates of the true accuracy of the classifier. 

Illustrated in Figure 27 are the results of these runs. Several items should be noted from 

the figure: 

• As expected, the more exemplars used to train the classifier, the lower the test set and 

validation set error rate. To some degree, then, more exemplars yield more accurate 

weight vectors. 

• In almost all cases, the test set error rate was lower than the validation set error rate. This 

means that an experimenter would be over estimating the accuracy of this classifier if 

test set error rate was used as the criterion. This fact is not peculiar to this discrimination 

problem, but is often observed when using multilayer perceptrons. 
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• The case where the total number of samples was 30 illustrates what happens when the 

multilayer perceptron classifies all exemplars in the same class. Even if an experimenter 

is certain that two classes exist, he might accept this classifier due to the low test set 

error rate. The design of experiments method yields an intuitively pleasing result in 

this case with the design points widely spread over the feature space. Since there are 

no areas of uncertainty, information is to be gained equally anywhere in the space and 

the design points reflect this. 

So, given that few exemplars yield inaccurate initial weight vectors and many exemplars 

yield accurate initial weight vectors, how do these accuracies and inaccuracies influence the 

performance of the final classifier? To investigate this, the design points in each case were 

added to the training set. Each multilayer perceptron was trained ten times with the augmented 

training set. The run with the lowest test set classification error was identified in each case 

and the weights for that run were recorded. The results are shown in Figure 28. Several items 

should be noted from this figure: 

• The "New" column in this figure shows the performance of the multilayer perceptron 

with the design points included. Again, in almost all cases the validation set error was 

higher than the test set error. 

• The change in the validation set error when the design points are added gets smaller 

as the number of exemplars gets larger. In other words, the contribution of the design 

points diminishes as the number of exemplars increases. This is presumably from two 

causes 

- The network is already fairly accurate without the design points. 

- The design points comprise a smaller and smaller percentage the total data set. 
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• Viewing the figure as a whole, one can see the increasing accuracy of the classifier as 

the number of exemplars increases. In the 513 sample case, it appears that little is to be 

gained by selecting further design points. 

3.6   Chapter Summary 

hi this chapter, sampling methods for single output multilayer perceptions were de- 

veloped. These statistically based methods select design points for experimentation so as to 

best estimate the multilayer perception weights. The methods presented in this chapter are 

combined into an overall methodology and applied to a sample problem in Chapter V. 

3.6.1 Design of Experiments for Continuous Feature Spaces. Initially the feature 

space was assumed to be continuous and Powell's method was used to maximize the Box and 

Lucas criterion. Experiments performed at the chosen design points and added to the training 

set exhibited superior accuracy over random design points and over design points chosen is a 

grid. The fact that the design point methodology outperformed the points chosen in a grid is 

noteworthy, hi practical applications, it is often assumed that gathering data in a grid pattern 

is optimal. Indeed, volumes of literature exist on selecting factorial designs based on linear 

or quadratic models—not extremely nonlinear models such as the multilayer perception. As 

shown empirically in this chapter, selecting points in a grid may result in a less accurate 

classifier. 

3.6.2 Design of Experiments for Discrete Feature Spaces. In practice, many discrim- 

ination problems allow experimentation only at discrete points in the feature space. For this 

reason, a discrete method was developed parallel to the continuous method using a discrete 

exchange algorithm. Multilayer perceptions trained with design points chosen from a feasible 

set by this method exhibited superior accuracy over those trained with randomly selected 
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points. It should be noted that this discrete algorithm could be used for a continuous feature 

space. All that would be required is the discretization, to some level, of the input features. 

3.6.3 Ranking Design Points. Once a set of design points has been chosen, two 

methods of ranking design points were presented. One method ranks the points according to a 

simple dot product and the other uses a saliency measure. These ranking methods were shown 

to result in the selection of the "best" design points. 

When contrasted, the ranking methods appear to emphasize different characteristics of 

the design points. The dot product measure highlights the points where the gradient of the 

output with respect to the weights is largest. In a well trained multilayer perceptron, the large 

gradients will appear near the boundary. The saliency ranking highlights the points where the 

gradient of the output with respect to the inputs is the largest. This measure ranks a point high 

when its use will cause a large change in the output. It may be that, in certain circumstances, 

one measure makes more sense than the other. 

The D-optiniahty criterion, in conjunction with the ranking measures, has the potential 

to be used to choose exemplars from set of points other than design points. Further research 

may show that exemplars in a training set can be ordered by these methods. 

3.6.4 DLF Networks for Design of Experiments. Exploiting the possible functional 

forms that a multilayer perceptron may take, a Direct Linear Feedthrough (DLF) network was 

introduced. The DLF was appealing for several reasons: 

1. From a training point of view, if there are linearities present in the discrimination 

problem, a DLF network allows one to develop a classifier with fewer hidden nodes 

and fewer weights. 

2. In a design of experiments setting, the parameters associated with the linear part of the 

model may be ignored. 
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3. The elements of the design point criterion associated with the linear parts of the DLF 

network are very simple. 

The result is a reduction in the complexity of the design point criterion. 

3.6.5 Subsets of Parameters. A second approach to reducing the complexity of the 

design point criterion presented here involved developing a new criterion which emphasized 

the lower layer weights in the multilayer perceptron. It appears that, for the single output 

multilayer perceptron, it is sufficient to consider the lower layer weights when selecting design 

points. This simplification considerably reduces the number of calculations required. 

3.6.6 Sensitivity to Initial Data. The test problem observed for investigating the 

effects of the initial weight vector w confirmed many previously known results on multilayer 

perceptrons. First, is was demonstrated that the more exemplars used to train the classifier, 

the more accurate the result—an intuitive result. Second, it was shown that test set error 

rates should only be used as indicators and can vary greatly from the population error rate. 

In terms of design point selection, it was shown that as the number of initial exemplars 

increases, the benefit gained from the design points decreases. Finally, an example was given 

for a multilayer perceptron which erroneously classifies the entire feature space as one class. 

Design points were placed in a seemingly random pattern over the feature space, demonstrating 

the robustness of the method. 
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IV. Design of Experiments for Multiple Output Multilayer Perceptrons 

4.1   Introduction 

To this point, only single output multilayer perceptrons have been addressed. The 

introduction of multiple output multilayer perceptrons greatly increases the complexity of the 

experimental design point methodology. As in the single output case, the theory and results 

in this chapter are based on a multilayer perceptron with a single layer of middle nodes and 

sigmoidal activations at the middle and output nodes. Unlike the two-class case, multi-class 

discrimination problems require more than one multilayer perceptron output. The convention 

is to use one output for each class with the desired output coded as "1" for the correct class 

and "0" for all other classes. A vector is, therefore, classified according to the node with the 

greatest output. 

Networks with multiple outputs correspond to multivariate nonlinear regression models. 

Compared with univariate research, a limited amount of work has been done in the area of 

design of experiments for nonlinear models with multivariate response. 

In this chapter, the D-optimality criterion for multi-response models is revisited. Next, 

a criterion is developed for a discrete feature space. Results are then presented for a four-class 

discrimination problem. Finally, a method of reducing the complexity of the design point 

criterion is formulated and demonstrated. 

4.1.1 Multi-Response D-Optimality for Multilayer Perceptrons. As stated in Equa- 

tion 64, the criterion used for multi-response models is 

94 



where aij are the elements of the known inverted variance-covariance matrix and \D\ is to be 

maximized. This criterion can be estimated by 

\D\ = EE^F.JF, 
i=i i=i 

(118) 

where vij is the i jth element of the inverse of the estimated variance-covariance matrix. (See 

Section 2.4) All available data vectors (xs, s = 1,..., N) are used to estimate uJJ with 

1 N 

(119) 

and {vij} = {uij}-1, «,i = 1,2,... ,r.  The observations required for calculating these 

estimates are readily available during the training of the multilayer perceptron. 

Viewed simply, the multi-response D-optimal criterion is a weighted sum of single 

response D-optimal criterion taken over all possible response pairs. Observe that when r = 1, 

the criterion in Equation 118 is identical to the one given by Box and Lucas (used in Chapter 

H) [13]. One can gain further insight by supposing there are only two responses, y\ and y2, 

and s/1 can be measured much more accurately than y2. hi this case, a\ « o\. Letting p be 

the correlation between yx and y2, then 

£-x = 
l 

<T2(1-P2) ^((l-V 

-P 1 
<T1<72((1-P2) cr|(l-P2) 

(120) 

and therefore, a11 » a22. The criterion gives greater weight to F.fF.x than to F.%F.2 and 

thus emphasizes the selection of design points appropriate for yx [20]. 

hi the single response case, when the feature space is discrete (or assumed to be discrete), 

design points were chosen so as to maximize 

f.T(x)(FT
JF'.)-1f.(x) (121) 
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Choosing points in this way ensured maximization of \F.TF.\ for the current set of design 

points. In the multi-response case, the criterion in Equation 118 must be maximized. 

Given an initial set of N design points, each F.i (i = 1,..., r) and | D | can be calculated. 

If an additional vector xa is added to the design, the criterion becomes 

\D\ 
r      r 

»•=1 i=i 

F.i 
T p 

F., 

f-J(Xa)   . 

r      r 

£E^'J 
i=i i=i 

F.J     f.,-(Xa)_ 
F3 

r      r                                  r      r 

EE^-f^ + EE 
t=l j=l                                i=l j=l 

Ä,-(x0)f.J (Xa) 

where F.i is TV x p and f.; is p x 1. 

Letf.(xa) - [f.1(xa),f.2(xa),...,f.r(xa)],S-1 = {&}, 

F.= 

F., 

F.2 

F.r 

and define the Kronecker product of A (m x m) and 5 (n x n) as [59] 

A® B = 

a\\B a,\iB ■    aXmB 

a2\B CI22B    ■ ■    a,2mB 

amlB o,miB   ■ Q"mm-LJ 

Then, 

J^W-FF,^.^-
1
®/^. 

(122) 

(123) 

(124) 

(125) 
1 = 1.7 = 1 
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and 

so that 

SE^(x.)f.J(x.) = i.(xa)X-H T(xa) (126) 

!J0| F T{^-1 <g> /JV)F. + f .(x^S^f T(xa) 

D + f.MS-^Cx«,) (127) 

The matrix £ * is symmetric, so by the spectral decomposition theorem, S 1 can be written 

as 

XT1 = PTP1 (128) 

where T is a diagonal matrix of eigenvalues of S_1 and P is an orthogonal matrix whose 

columns are the normalized eigenvectors associated with the diagonal entries of T [19]. Then, 

writing T as T2 (T?)2", 

\D\ £> + f.(xa)PT2(rä)^f/(xa) (129) 

LetA = f.(xa)PT2. Then 

D\= D + AA2 (130) 

Using the identity [48:210], 

Bn   B12 

B21   B22 
I-B11II-B22 + B2iBn B12\ = I-B22II-S11 + B12B22 B2i\ (131) 
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implies \D + AAT\ = \D\\I + ATD~1A\. Therefore, the multi-response discrete design 

point algorithm examines 

/+(f.(xa)PT^)Ti)-1(f.(xa)PT^ (132) 

and chooses (for inclusion in the design point set) the point xa that yields the largest value of 

this quantity. The above derivation is also applicable in a sequential design of experiments 

approach. For the single response case, see Equation 51. 

4.1.2 Notation. All notation developed in Chapter m, Section 3.1.2 can still be 

applied. In addition, the matrix of first partials will now be subscripted with the index of the 

output node, i.e., 

i?.j(w) = |M|        s = l,...,JV;   j = l,...,r;    i = l,...,p (133) 

These derivatives differ from the single response case only slightly, that is 

Wt=\ 
"kl.t-ei-D for*<(n + l)m 

w2r     t     11 rfr     «     i  i) (n|i)m   for {n + l)m<t<{n + \)m + (m + l)r 
l(n+l m+r I'*    rU   n+1 m+r I    ^    (n+L)m 

(134) 

and [a] is the smallest integer greater than a. Then, for lower layer weights, 

ft?s. 
^ = *;(1 - *>?•*}•(! - sJ'K (135) 

where x\s is the activation of the ith middle node given the input vector s and x% is the fcth 

element of the input vector s. Similarly for upper layer weights, 

l| = w - ^ (136) 
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The estimated variance-covariance matrix for the responses based on TV exemplars in 

the notation of multilayer perceptrons is 

1   N 

iV
  s=l 

where d* is the desired output for the i\h output node given the sth exemplar and z\ is the 

actual output of the ith output node for the 5 th exemplar. 

4.2   Results 

To demonstrate the multi-response criterion, a two-dimensional, four-class discrimina- 

tion problem was used. A multilayer perceptron with 10 hidden nodes, 50 training vectors 

and 500 test vectors was trained 30 times and the weight vector was chosen from the run with 

the lowest classification error on the test set. Figure 29 shows the discrimination problem and 

the original multilayer perceptron boundaries. 

The feature space was assumed to be continuous and Powell's method was used to 

maximize the determinant criterion and choose 30 design points. Figure 30 shows the resulting 

design points and the boundary formed by the trained multilayer perceptron. Note that, similar 

to the two-class results, the design points are near the boundaries of the trained multilayer 

perceptron. Calculation of these design points was a lengthy process requiring 41.54 hours of 

system time on a Sun Sparc station 5. Figure 31 shows a second iteration of the design point 

method (again choosing 30 points). Finally, Figure 32 shows the average test set classification 

error over 30 runs for the original multilayer perceptron and for Iterations 1 and 2 as compared 

to randomly chosen design points. The final average test set classification error for the results 

shown in Figure 32 are given in Table 4. The difference between the mean classification error 

for the design points and the random points was statistically significant (a = 0.05) for both 

iterations. 
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Figure 29.    Multiple Output Discrimination Problem and Original Multilayer Perceptron 
Boundary 

Table 4.   Multiple Output Discrimination Problem—Final Average Test Set Classification 
Errors 

Set Added to Training Set 
Average Test Set 

Classification Error 

None (Original Data) 26.85 
Iteration 1 Design Point Method 21.78 

Random Points 23.42 
Iteration 2 Design Point Method 18.86 

Random Points 20.04 
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Figure 30.   Multiple Output Discrimination Problem—Design Points and Resulting Bound- 
ary (Iteration 1) 
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Figure 31.    Multiple Output Discrimination Problem—Design Points and Resulting Bound- 
ary (Iteration 2) 
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Figure 32. Multiple Output Discrimination Problem—Average Test Set Classification Error 
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The saliency ranking measure (M2) introduced in Section 3.3.3 is directly applicable 

to multi-class discrimination problems. This measure was defined as 

^2(x) = EE 
i=i fe=i 

Zj{l - z^w^il - x})wli 
! = 1 

(138) 

where x is the design point under consideration and current weight estimates w are used. 

Design points will be ordered according to this measure with large values corresponding to 

"good" design points. Figures 33 and 34 show the design points and the value of M2 for each 

design point. Figure 33 corresponds to the data points found in the first iteration above and 

Figure 34 corresponds to the second iteration. The highest ranked design points in the first 

iteration are clustered near £i=0 and £2=0.5, while the points from the second iteration are 

clustered around zi=0.5 and rc2=0.8. It appears that each iteration emphasized a different area 

of the feature space resulting from different initial weight vectors. 

4.3   Reducing the Complexity of Design Point Determination 

The design point criterion as it currently stands is simple in form. However, it requires a 

huge number of calculations. To calculate the design point criterion for a single candidate set 

of design points requires r2 evaluations of the form vljF.jF.j. Each matrix F.{ requires Np 

evaluations of the derivative §^. Li turn, these derivatives require evaluation of the multilayer 

perceptron at each of N points. All of these calculations are required for a single evaluation 

of a single term in the design point criterion. The Powell algorithm may require thousands of 

evaluations of the criterion. Needless to say, simplification of the criterion is a necessary step 

toward practical implementation. 

The multi-response design point criterion (Equation 118) could be simplified if the 

responses were uncorrelated, i.e., if E = P, a diagonal matrix. Then, rather than r2 terms of 
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Figure 33. Design Points and M2—Iteration 1 
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X1 

Figure 34. Design Points and M2—Iteration 2 
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the form vijF.fF.3 there would be r terms of that form. Considering the fact that each term 

includes the multiplication of two N x p matrices, the savings is significant. 

One way to accomplish this goal is to "pre-set" the desired outputs in a manner that 

will produce uncorrelated actual outputs. As a multilayer perception trains, its actual outputs 

move closer and closer to the desired outputs. Therefore, it seems reasonable that the desired 

outputs can be used as estimates for the actual outputs. In addition, these desired outputs can 

be used to surmise the form of the variance-covariance matrix for the actual outputs. This can 

be shown as follows. 

In general, the covariance of y, and y3 is defined as 

cov(yi, y3) = E {[y,- - EM [y3 - E[y3}}} (139) 

The covariance can also be expressed as 

cov(yh y3) = E [yty3] - E [Vi] E [y3] (140) 

An estimate of the elements of the variance-covariance matrix is 

i     N 

-^  s=l 

where N is the number of observations, j/js is the value of the sth observation on the i\h 

element of y and //,- = ^ E^Li Vis- 

Let dk
is be the desired value of output node i for the 5th exemplar given that this 

exemplar is in the fcth class. Then, in multilayer perceptron notation, an estimate of the 

variance-covariance matrix of the desired outputs is given by 

1   N 

Vii = T7 J2 d'isd'js ~ MN      hj = h---,r (142) 
iV  s=l 
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with the • meaning "without reference to" and in = jj 12%=i d'is. Since actual outputs 

approach desired outputs during training, it seems reasonable that vtj be used as an estimate of 

the variance-covariance matrix of actual outputs. Since dk
s will be the same for all exemplars 

in class k, Vij can be rewritten as 

1   r 

Vij = -J2 did). - Wj      i,j = l,...,r (143) 
r fc=i 

(This equation assumes an equal number of exemplars from each class.) 

In order to arrive at a diagonal estimated variance-covariance matrix, one must choose 

desired outputs so that the following holds: 

1. Vij = 0 for all i ^ j. 

2. The class representations are unique. Defining the distance, A, between class represen- 

tations i and j as: 

A^ = {E(4.-4.)
2
}

2
        *,j = l,...,r (144) 

This distance must be greater than zero. 

3. The desired outputs should be such that 

4e{0,l}      i,fc = l,...,r (145) 

and must be such that 

<#e[0,l]       i,* = l,...,r (146) 

Even when the above constraints are satisfied, one is not guaranteed that the actual 

outputs of the trained network will be uncorrelated. The resulting outputs should be approxi- 
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mately uncorrelated if the network is sufficiently well-trained and if the number of exemplars 

in each class is approximately equal. 

4.3.1 Finding Appropriate Desired Outputs. The next question to be answered is how 

one actually finds desired outputs to satisfy the above constraints. The definition of a special 

class of matrices called Hadamard matrices is now required: 

Definition 2 The Hadamard matrix is a square array whose elements are only +1 and -1 

and whose rows and columns are orthogonal to one another. A symmetrical Hadamard matrix 

with the first column containing +l's is known as the normal form for the Hadamard matrix. 

The lowest order Hadamard matrix is of order two: 

Ho = 
1     1 

1   -1 
(147) 

Higher order matrices restricted to having powers of two, can be obtained from the recursive 

relationship 

HN = HN® H2 (148) 

where N is a power of 2 and ® denotes the Kronecker product defined as 

A®B 

auB a12B    • ■    a,\mB 

Ö21-S CL22B    • ■    a2mB 

amiB a-miB   • Qmrntt 

(149) 

[4:28-29] 
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Table 5. Desired Outputs for Four Class Discrimination 

Class 1 Class 2 Class 3 Class 4 
Output 1 1 1 1 1 
Output 2 1 0 1 0 
Output 3 1 1 0 0 
Output 4 1 0 0 1 

Hadamard matrices can be used to easily determine desired outputs for discrimination 

problems when the number of classes is equal to a power of two. For example, for four classes 

HA U2®H2 

1     1 1 1 

1   -1 1 -1 

1     1 -1 -1 

1   -1 -1 1 

(150) 

(151) 

As stated earlier, desired outputs should be 0 or 1. Substituting 0's for -l's in H4 results 

in desired outputs that satisfy the three constraints listed above. These vectors are listed in 

Table 5. Notice that Output 1 is the same (1) for each class and makes no contribution to 

classification. Therefore, this output will be removed leaving three outputs for the classification 

of four classes. The idealized form of the variance-covariance matrix and distance matrix for 

the three desired outputs is 

0.3333        0 0 

0        0.3333        0 

0 0        0.3333 

(152) 
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Table 6. Choosing Desired Outputs for Five Class Discrimination 

Class 1   Class 2   Class 3   Class 4 Class 5 
Output 1 
Output 2 
Output 3 
Output 4 

1111 
10           10 
110           0 
10           0           1 

1 
d-25 

45 
«45 

Output 5 1111 0 

c (153) 

and the distance matrix is 
* y/2 y/2 V2 

y/2 * \/2 \/2 

y/2   V2     *     \/2 

y/2    y/2    y/2      * 

Training to these desired outputs should result in a variance-covariance matrix that is approx- 

imately diagonal. 

By changing the desired outputs, the method of classification of input vectors must also 

change. Previously, an input vector was classified according to the greatest output node. With 

this new scheme, an input vector will be classified according to the closest vector of desired 

outputs in a Euclidean distance sense. 

The question remains as to how to select desired outputs when the number of classes is 

not a power of two. For an r-class problem, this can be accomplished by simply augmenting 

the desired outputs for an (r — l)-class problem. For five classes, begin with the desired 

outputs for four classes. Augment the first row with an additional" 1." Augment an additional 

row of 1 's and a single 0 at d\.. (See Table 6) 
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Table 7. Desired Outputs for Five Class Discrimination 

Class 1   Class 2 Class 3 Class 4 Class 5 
Output 1 1            1 1 1 1 
Output 2 1            0 1 0 0.5 
Output 3 1            1 0 0 0.5 
Output 4 1            0 0 1 0.5 
Output 5 1            1 1 1 0 

Now, in order to maintain u,-j = 0 for i / j, it must be true that u25, v35 and v45 equal 

zero. This yields 

'k jk E d2.d 
k=\ 

£44 
k=i 

£44 

5/J,2fJ.5 

5/i3/«5 

fc=l 

Substituting in the known desired outputs results in 

(154) 

4 = 0.5      4 = 0.5      4 = 0.5 (155) 

The desired outputs in Table 7 satisfy the criteria for desired outputs in a five class 

discrimination problem. Again, Output 1 is the same for all classes and will be deleted. The 

idealized form of the variance-covariance matrix is 

0     0        0        0 0 

0   0.25     0        0 0 

S=     0     0     0.25     0 0                                      (156) 

0     0        0     0.25 0 

0     0        0        0 0.20 

112 



Table 8. Desired Outputs for Six Class Discrimination 

Class 1   Class 2 Class 3 Class 4 Class 5 Class 6 
Output 1 1            1 1 1 1 1 
Output 2 1            0 1 0 0.5 0.5 
Output 3 1            1 0 0 0.5 0.5 
Output 4 1            0 0 1 0.5 0.5 
Output 5 1            1 1 1 0 0.8 
Output 6 1            1 1 1 1 0 

and the distance matrix is 

* y/2        V2        \/2     VT75 

C =       y/2        V% * y/2     \fL75 (157) 

y/2        V2        y/2 *       VL75 

V1J5   VT75   7T75   VT?75       * 

Note that, to obtain a solution, it was necessary to relax the constraint that the values of the 

desired output be 0 or 1 and use 0.5. The distance matrix indicates that multilayer perceptron 

training should not suffer from this "three-level" coding. The separation between classes is 

still fairly large. 

Similarly, six and seven class desired outputs can be obtained by augmentation. Given 

the five-class solution, which is known to satisfy the constraints, augment a sixth row and 

column to obtain the desired outputs in Table 8. Then given the six-class solution, augment a 

seventh row and column to obtain the desired outputs in Table 9. Both the six and seven class 

desired outputs given should result in approximately diagonal variance-covariance matrices. 

For an eight-class problem, the H8 Hadamard matrix (transformed to 0's and l's) can be 

used with augmentation performed for the nine-class problem, and so on. In each case, the 
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Table 9. Desired Outputs for Seven Class Discrimination 

Class 1   Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 
Output 1 1            1 1 1 1 1 1 
Output 2 1            0 1 0 0.5 0.5 0.5 
Output 3 1            1 0 0 0.5 0.5 0.5 
Output 4 1            0 0 1 0.5 0.5 0.5 
Output 5 1            1 1 1 0 0.8 0.8 
Output 6 1            1 1 1 1 0 0.83333 
Output 7 1            1 1 1 1 1 0 

multilayer perceptron is reduced by a single output since the outputs for that node are equal. 

(Here, Output 1 was the deleted output.) 

4.3.2 Simplified Design Point Criterion. When the desired outputs are adjusted as 

described in the section above, it may be that the estimate of the variance-covariance matrix 

based on actual outputs is not approximately diagonal. The desired and actual outputs will 

always differ by some amount. One cannot expect the actual outputs to behave exactly as the 

desired outputs. 

If the form is approximately diagonal, the design point criterion becomes 

\D\ 
1 £ ^F.. 

! = 1 
(158) 

significantly reducing the number of calculations. Design points are then chosen based on this 

reduced criterion. Figure 35 shows the simplified design point method. 

4.3.3 Results. Initially, the simple test problem shown in Figure 36 was used to verify 

the method. Success in obtaining uncorrelated outputs is dependent on the degree to which 

the multilayer perceptron was trained. To produce a very well trained network, 1000 training 

exemplars were used to train a multilayer perceptron with six hidden nodes for 5000 epochs. 
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Figure 35. Simplified Multi-Response Design Point Determination Method 
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Figure 36. Four-Class Problem for Verification 

The desired outputs for these exemplars were coded as in Table 5 with the first output deleted. 

The classification boundary produced by the multilayer perceptron was approximately equal 

to the true boundary (E0 = 0.0315 for the training set). The variance-covariance matrix of 

the actual outputs is 

3.1563     -0.1565     0.1602 

-0.1565     8.1407     -0.2212 (159) 

0.1602    -0.2212    15.0875 

which is approximately to a diagonal variance-covariance matrix. It appears that preselect- 

ing desired outputs is a viable method of arriving at actual outputs that are approximately 

uncorrelated. 

In most discrimination problems, the multilayer perceptron will not be as well trained. 

In a more realistic problem, the four-class problem from Section 4.2 was used. The desired 
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Outputs for only 50 input vectors were coded as in Table 5. A multilayer perceptron with ten 

hidden nodes was trained. The inverse variance-covariance matrix, £_1, estimated using the 

residuals from the trained network is 

s-x = 
14.3777 -3.4741 -8.2570 

-3.4741 123.4423  0.5783 

-8.2570  0.5783  12.5190 

(160) 

This matrix is not approximately diagonal. However, at least four of the elements could be 

considered 0 reducing the matrix to 

E"x = 

14.3777  0.0000  -8.2570 

0.0000  123.4423  0.0000 

-8.2570  0.0000  12.5190 

(161) 

This matrix will be different for every multilayer perceptron trained. Yet, one would expect 

approximately the same structure. The relatively large value of the (2,2) element stems from 

the class coding and the training. Notice that the second output is coded 1 for both Class 1 

and Class 2 and 0 for Class 3 and Class 4. Since the multilayer perceptron can accurately 

discriminate between a super-class containing classes 1 and 2 and a super-class containing 

classes 3 and 4, the estimated variance of the second output is small. This small variance 

results in a large value in the inverse matrix. 

The design criterion reduces to approximately 

\D\ = 14.3777F.fF-i - 8.2570F.fF.3 + 123.4423F^F2 - 8.2570F.fF.3 + 12.5190F.jF.3 

(162) 

The original criterion with 16 terms has been reduced by 69 percent. The reduced criterion 

was used to determine 30 design points. Using the truth model, these 30 design points were 
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Figure 37.   Multiple Output Discrimination Problem—Design Points and Resulting Bound- 
ary for Reduced Criterion 

classified and added to the training set. Figure 37 shows the design points and the resulting 

multilayer perceptron boundary. Figure 38 compares the average test set classification error 

for the simplified criterion method, the "full" criterion method and a randomly selected set of 

points. Here, the error when using the simplified criterion method is significantly less than the 

error for the randomly selected points (a — .05). Calculation of this simplified design point 

criterion required 12.87 system hours on a Sun Sparc station 5. This is a 31 percent reduction 

of the time required to process the original multiple output criterion. 

4.4   Chapter Summary 

In this chapter, sampling methods for multiple output multilayer perceptrons were 

developed. These statistically-based methods select design points for experimentation so as to 
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best estimate the multilayer perceptron weights. The methodologies presented in this chapter 

are combined into an overall approach and applied to a sample problem in Chapter V. 

4.4.1 Multiple Output Criterion—Discrete Feature Space.  Initially, the multi-response 

criterion is investigated and found to simply be a weighted sum of individual single-response 

criteria. The weighting is done according to the inverse of the variance-covariance matrix. 

In the single response case, an equation was derived for the D-optimal criterion given 

the addition of a single exemplar to a set of exemplars. Mitchell uses the result to define the 

discrete exchange algorithm. The corresponding multivariate derivation is not present in the 

literature. In this chapter, that extension was theoretically derived. Given the result, extension 

of the discrete algorithm to handle multi-class problems is relatively effortless. 

4.4.2 Multiple Output Criterion—Continuous Feature Space. The full design point 

criterion was tested for a four-class, two-dimensional problem. The D-optimal criterion 

resulted in a significantly lower average classification error over randomly chosen points. To 

show that the technique could be applied iteratively, the weights from the resulting multilayer 

perceptron were used to find a second set of exemplars. These points significantly reduced 

the average classification error over the first iteration and over a second set of random points. 

In summary, a sampling method for multiple output multilayer perceptions has been 

developed. It was shown empirically that more accurate multilayer perceptions are produced 

when this method is used. In addition, the iterative nature of the method was illustrated. 

4.4.3 Reducing the Complexity of Design Point Determination. The original criterion 

is simple in form, however, it is computationally unwieldy. A method is developed which 

simplifies the criterion by causing the outputs of the multilayer perceptron to be uncorrelated. 

Then, since the variance-covariance matrix becomes diagonal, there are only r terms in the 

criterion as compared to r2. 
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By judiciously choosing the values of the desired outputs, one can cause these outputs 

to be approximately uncorrelated. Using Hadamard matrices, it is shown that it is possible 

to determine the appropriate desired outputs for any number of classes. When tested, the 

accuracy of the resulting multilayer perceptron was comparable to the accuracy when using 

the full criterion. The conclusion is that the simplification is a viable method of significantly 

reducing the complexity of selecting exemplars. 
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V. Design of Experiments Methodology 

5.1   Introduction 

The purpose of this chapter is, first, to succinctly list the steps one would use to determine 

experimental settings for multilayer perceptrons classifiers and, second, to demonstrate the 

application of these steps with two examples. 

5.2   Overall Methodology 

5.2.1 Single Output (Univariate) Multilayer Perceptrons. Figure 39 shows the overall 

design point methodology for single output multilayer perceptrons. This figure unites the 

research done in Chapter IE into a single framework for practical implementation. The first 

consideration is whether the feature space will be considered discrete or continuous. It is 

possible for a classification problem with continuous data to be discretized and treated as 

a discrete feature space. This research has explored the Discrete Exchange Algorithm for 

determining design points in a discrete setting. 

If the feature space is continuous, then a decision is made as to whether complexity 

reduction is desired. If the classification problem under study is relatively small with few 

parameters, it may be sufficient to use Powell's algorithm with no complexity reduction. 

However, if the problem is large with many weights, or if it is necessary to produce design 

points often, then some simplification should be considered. 

If the user has some reason to believe that there are linearities in the classification 

problem, then it would be desirable to test a DLF network structure. By doing so, not 

only will the design point method be simplified, but the user may discover unknown linear 

characteristics of the problem. If the DLF network structure is indicated, then design points 
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Figure 39. Overall Single Output Design Point Methodology 
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can be found using the DLF network criterion developed in Chapter m. If a DLF network is 

not indicated, then either the original criterion or a subset criterion must be used. 

A quick calculation of the subset indicator developed in Chapter HI will help a practi- 

tioner decide if the subset method is applicable. As stated earlier, it is believed that the subset 

method is applicable for all two-class problems. 

There is no "correct" path through the flow diagram shown in Figure 39. The multilayer 

perceptron user must judge which method should be used from several factors. Some of these 

factors include: 

• The size of the training and test sets. 

• The complexity of the classification problem. 

• The accuracy of the initial weight vector. 

• The number of inputs and hidden nodes. 

• The convergence of the maximization (or minimization) algorithm used to find design 

points. 

• The frequency with which the design point method will be used. 

5.2.2 Multiple Output (Multivariate) Multilayer Perceptrons. Figure 40 shows the 

overall multiple output design point methodology. This figure unites the research conducted 

on choosing design points for multi-output networks. As in the single output case, the first 

consideration is the type of feature space. If the feature space is considered discrete, then 

the Discrete Exchange algorithm with the multi-response criterion developed in Chapter IV 

should be used. 

If the feature space is considered continuous, then the multi-response criterion is used 

within the Powell algorithm. If the problem is complex, a simplified criterion can be used 
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after a transformation of the desired outputs. This complexity reduction may be less desirable 

than the "full" method for the following reasons: 

• For some problems, the transformation of the desired outputs may result in a less 

accurate multilayer perceptron (as compared to the more traditional coding). 

• The interpretability of the network has been degraded. With a traditional coding scheme, 

an exemplar is coded as Class i if output node i has the largest value. In the transformed 

setting, one must look at all output values and compare them to desired outputs before 

the exemplar can be classified. 

5.3   Application to Armor Piercing Incendiary Projectile Data 

In this section, the overall methodology for single output multilayer perceptrons is 

applied to the area of aircraft survivability. It cannot be stressed enough that this is only one 

application where the methods outlined in this research can be used to determine experimental 

design points. Whenever experiments are to be performed and a multilayer perceptron will be 

used to model the data, the results presented in this research are applicable. 

5.3.1 Background. An armor piercing incendiary projectile is a bullet that can per- 

forate light armor. The projectile contains a flammable mixture that is generally encased in 

the nose of the projectile body. The design of the projectile allows the jacket over the nose to 

deform or peel off upon impact of the target skin. Consequently, the incendiary mixture will 

flash as the steel core of the bullet continues its flight [49]. 

The intense flash following jacket failure of an API is known as incendiary functioning 

(IF). At present, there are five classifications for incendiary functionings: complete, partial, 

slowburn, delayed and non-functioning. These classes are used extensively in isotropic 

material IF studies [37]. 

126 



Prediction equations for API penetration mechanics are an essential part of the Air 

Force's aircraft vulnerability analysis program. Specifically, a projectile's type of incendiary 

functioning after aircraft skin penetration is used in aircraft survivability analysis. A problem 

currently facing the Air Force is that the prediction methodologies used for armor piercing 

incendiary projectiles do not extend to the use of composite materials. 

The Survivability Enhancement Branch of Wright Laboratories (Wright-Patterson Air 

Force Base) performs test shots in order to gather the data to be used in the development of 

prediction models. To date, data has been collected using standard penetration mechanics 

testing sequences. These sequences are equivalent to factorial or half-factorial experimental 

designs. Recently, multilayer perceptrons have been used as models to predict the functioning 

of APIs based on the firing characteristics [37, 5, 6]. Given that multilayer perceptrons are 

to be used, the research presented in this document for designing experiments is extremely 

applicable. 

Figure 41 shows the test used to obtain the experimental data. The feature set used for 

classification is organized into feature vectors, each vector representing the measurements and 

results for a single API projectile test shot. The features used were as follows: 

1. Striking Velocity (Vs) - The projectile's velocity was measured immediately before 

impact and was assumed to be the striking velocity of the projectile on the target panel. 

Possible values: «1500 fps, «2000 fps, «2500 fps. 

2. Obliquity Angle (OBL) - The obliquity angle is the angle between the line perpendicu- 

lar to the panel surface and the projectile's flight path. For example, a shot fired straight 

at a panel has a zero degree angle of obliquity, hi this analysis, OBL is converted 

to the secant of the angle (SECT). Possible values: 1.00000 (0 degrees), 1.15470 (30 

degrees), 1.41421 (45 degrees), 2.00000 (60 degrees), 2.92380 (70 degrees). 
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3. Striking Mass (Ms) - The striking mass is assumed to be the mass of the projectile 

before firing and is measured in grains. Possible values: f«745 grains, ^945 grains. 

4. Panel Ply Thickness (TKIN) - Test panels varied in thickness according to ply size. 

Possible values: 32 ply, 48 ply, 64 ply. 

5. Functioning (IF) - For this analysis, projectile firings will be classified as "function" 

or "non-function." 

5.3.2   Application of Design Point Methodology. 

5.3.2.1 Discrete Feature Space. The design of experiments methodology in- 

troduced above was applied to the API projectile situation. It was assumed that the data from 

50 API projectile experiments was available. A multilayer perceptron with 10 hidden nodes 

was trained using 30 training exemplars and 20 test exemplars. For the practical application 

of multilayer perceptrons, it is necessary to use a test set. As stated previously, the test set is 

used to test the accuracy of training while training is on-going. 

One of the major advantages of allocating data to a test set is that it helps guard against 

overlearning. Classification error rates in Chapters HI and IV were reported on the test set. 

In this chapter, since only 50 vectors are assumed to be available, an additional set—the 

validation set—will be used. The validation set should be viewed as a large set of control data 

not known during training, but used to judge the results of the method. The error rate on the 

validation set allows one to see how accurate the classifier would have been if more data was 

available. 

A second practical consideration is normalization of the data. When initial weights are 

being obtained, the training and test sets are normalized. In this research, normalization is 

done by reseating the data to values between 0 and 1. The elements of the sth un-normalized 
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feature vectors become: 

~s =      xi - nun.x'k k = l,...,n]S = l,...,N (163) 
max., x% — mins a;| 

where iV is the total number of exemplars in the train and test sets, k denotes the feature, s 

denotes the exemplar and x% is the normalized element of the exemplar. 

Since the initial set of weights is based on the normalized exemplars, the design point 

method will yield normalized design points. To perform experiments, these design points must 

be un-normalized. The values of mins x% and maxs x
s

k can be used to produce approximately 

un-normalized features. 

Figure 42 shows the original multilayer perceptron boundaries. The weight vector 

resulting from this initial training (50 vectors) was used to choose 10 design points. Due to 

budgetary/resource constraints, it was not possible to actually conduct the indicated exper- 

iments. Instead, the 281 shots available in the WL/FTVS database were used to develop a 

multilayer perceptron to serve as the truth model and take the place of actual experiments. 

This truth model is shown in Figure 43. The 10 design points chosen were processed through 

this truth model and with the resulting classification were added to the training set (resulting 

in a total of 60 vectors). The design points and the resulting boundaries are shown for two 

features at a time in Figure 44. 

The use of the test set proved to be especially advantageous in this application. Due 

to the small number of training vectors used, overlearning was observed during nearly every 

multilayer perceptron run. Therefore, simply averaging the classification error across multi- 

layer perceptron runs does not reflect the true capability of the individual networks. To adjust, 

classification error rates were noted at the epoch where the test set classification error rate was 

at a minimum. The first plot in Figure 45 shows average classification errors at the minimum 

test set error for the train, test, and validation sets. The different shading on the bars denotes 
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Figure 45.    API Projectile Average Classification Error Comparisons—Discrete Feature 
Space (30 Runs) 

the average original error rate, the average error rate when the design point method was used, 

the average error rate when random points were used and the average error rate when points 

were chosen according to a user defined scheme. 

In this case, the "chosen" design points were obtained by reducing the three-level feature 

PLY to a two level feature, the three-level feature VELOCITY to a two-level feature and the 

five-level feature SECT to a three-level feature. Saliency measures on preliminary multilayer 
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perception runs indicated that the feature MASS contributed little to classification, so this 

feature was fixed at its high value. These reductions result in the 12 vectors (2 • 2 • 1 • 3 — 12) 

that make up the "chosen" data set. This data set represents what is typically done at WL/FTVS 

when a limited number of experimental settings are required. 

Note that over 30 runs the design point method yields a lower classification error on 

the validation set than the random points. The test set error is also lowest for the design point 

method. The difference in classification errors may appear small here. The reason is the small 

number of exemplars added to the training set (only 10). The next logical step would be to 

use the resulting weight vector and select another 10 exemplars. 

The second plot in Figure 45 shows the average test set classification error over the 30 

runs of the multilayer perceptron. (This plot compares to classification error plots in previous 

chapters.) The figure illustrates that, in general, the design point method will yield a lower 

error rate than the random points and the chosen points. However, it does not show the lowest 

achievable error rate because of the averaging. 

5.3.2.2 Continuous Feature Space. The current experimental configuration for 

API shot equipment allows only for certain discrete values of the shot parameters. In this 

section, it is assumed that there is a need to treat the input features as continuous variables. 

Perhaps the test equipment was improved to provide a wide range of settings, or experimenters 

wish to know at what levels it would be profitable to conduct future tests. 

All conditions are the same as in the previous section. First, the "full" criterion was 

used to find 10 design points in a continuous feature space. Next, the high value of the subset 

method indicator revealed that the method was applicable and 10 points were chosen using the 

subset criterion. These sets of 10 points were input to the truth model to obtain classifications. 

Multilayer perceptions were then trained with the additional 10 points as part of the training 

set. Figure 46 shows the classification error results for the design point method, randomly 
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Figure 46.   API Projectile Average Classification Error Comparisons—Continuous Feature 
Space (30 Runs) 

chosen points and the subset method. Note that the random points yielded the highest error 

for both the test and validation sets (over 30 runs). The average test set classification error 

(bottom of Figure 46) indicates that the subset method tends to yield the lowest classification 

error over all 2000 epochs. This figure also indicates that the full design point criterion was 

so sensitive to overlearning that it appears to produce a higher error rate than the original 

multilayer perception. 
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Figure 47.   API Projectile Average Classification Error Comparisons—Distributed Linear 
Feedthrough (DLF) Network (30 Runs) 

Finally, the DLF network with 6 middle nodes was applied to the same API problem. 

Using the simplified criterion, 10 design points were chosen. As before, these design points 

with their classifications were included in the training set. A DLF network, also with 6 middle 

nodes, was trained on this data. In addition, a DLF network with 6 nodes was trained with 10 

randomly chosen points added to the training set. Figure 47 shows the resulting classification 

error rates. Again, the design point method yielded the lowest average classification error. 
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5 3.3 API Projectile Summary. The single output design of experiments methodology 

has been demonstrated for the API projectile classification problem. It was shown that the 

design point method developed in this research chooses points for experimentation which 

produce an accurate classifier. In the API projectile discrimination problem, 10 design points 

were added to an initial set of 50 vectors. If necessary, this method could be repeated to 

produce additional design points. 

The research objective has been reached. This example has illustrated that an experi- 

menter using multilayer perceptrons can now answer the question: Where do I perform the 

experiments? 

5.4   Application to Stress-Time Plots for Predicting Incendiary Functioning Types 

5.4.1 Background. In the last section, four parameters of an API projectile shot 

were used to predict whether functioning occurred. Although multilayer perceptrons provide 

an empirical model for predicting API projectile performance, several methods have been 

developed based on the physical characteristics of the system under study. In 1977, Falcon 

Research and Development (FRD) presented a model which has become the basis for the IF 

prediction methods used today [37]. 

FRD identified force (pressure opposing the projectile's penetration) and impulse (time 

force is applied) as the defining criteria for classifying IF types. FRD defined the stress (a) 

that occurred for all normal obliquity shots. To account for stress at different obliquity angles, 

FRD developed ACT'S for each type of projectile. The sum of the two stresses, a and ACT, 

equals the total stress effect. A time parameter t* is used in place of impulse [23]. With 

a + ACT and t* calculated, stress-time plots are created. These plots delineate zones where 

the five IF classes would occur. Figure 48 provides an example of one of these plots. 
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Figure 49. Truth Model for Seven-Class Stress-Time Plot Discrimination Problem 

5.4.2 Application of Design Point Methods. The stress-time plot in Figure 48 was 

re-scaled and normalized to produce the plot shown in Figure 49. Each of the zones shown 

are numbered Class 1 through Class 7. This plot will be used as the truth model and the data 

will be generated from it. 

To simplify the multi-response design criteria, the multilayer perceptron desired outputs 

were coded as shown in Table 10. Initially 100 vectors were used to train a multilayer 

perceptron with ten hidden nodes. Using residuals, the variance-covariance matrix of the 

outputs was calculated. Because the multilayer perceptron was not perfectly trained, the 

variance-covariance matrix was not approximately diagonal.   However, it was possible to 
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Table 10. Desired Outputs for Seven Classes in Stress-Time Plot 

Class 1    Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 

Output 1 1            1 1 1 1 1 1 

Output 2 1             0 1 0 0.5 0.5 0.5 

Output 3 1             1 0 0 0.5 0.5 0.5 

Output 4 1            0 0 1 0.5 0.5 0.5 

Output 5 1            1 1 1 0 0.8 0.8 

Output 6 1            1 1 1 1 0 0.83333 

Output 7 1            1 1 1 1 1 0 

s-x = (164) 

remove 18 of the 36 elements in the matrix. These elements were removed because they 

were relatively small and would have little effect in the design point criterion. The inverse 

variance-covariance matrix is shown below. The zeroes in this matrix indicate where elements 

were removed. 

6.0117 0.0000 -3.8187 0.0000 0.0000 0.0000 

0.0000 12.5071 0.0000 0.0000 0.0000 4.6405 

-3.8187 0.0000 7.6334 -3.1881 0.0000 -3.5436 

0.0000 0.0000 -3.1881 9.3183 0.0000 3.6686 

0.0000 0.0000 0.0000 0.0000 10.7487 11.5373 

0.0000 4.6405 -3.5436 3.6686 11.5373 82.8441 

The resulting reduced design point criterion contains 63 percent fewer terms than the full 

criterion. 

Using the reduced criterion, 30 design points were chosen and these points were added 

to the training set. Figure 50 shows the design points and resulting multilayer perception 

boundaries. Overlearaing was not observed in this application as it was in the API projectile 

problem. Therefore, the average test set error rate was a good indicator of accuracy of the 
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Figure 50.    Stress-Time Plot Problem—Design Points and Resulting Multilayer Perceptron 
Boundary 

multilayer perceptron. The resulting average test set classification error is shown in Figure 51. 

The design point method yields the lowest error rate. 
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5.5    Chapter Summary 

Multilayer perceptrons are currently being used by WL/FTVS. Until this research was 

accomplished, no definitive technique for planning experimentation was available. In the past, 

as composite materials were procured, fractions of factorial designs were used. Selecting data 

this way does not consider the extensive nonlinearities in the multilayer perceptron structure 

and, as shown in this research, may not produce the most accurate classifier. 

5.5.1 Application to Armor Piercing Incendiary Projectile Data. The application of 

the single output methodology was successfully demonstrated for the classification of API 

projectiles. The full range of techniques was exercised and, in all cases, the newly developed 

techniques outperformed the other data selection methods. 

Two practical issues applicable in "real world" problems were addressed. First, the 

importance of the test set was investigated for cases where small amounts of data are available. 

The inclusion of the test set helps guard against overlearning and insures near-optimal weights. 

Data normalization is the second practical issue. Normalized design points are selected by the 

design point method and, before experiments can be performed, the feature vectors must be 

restored from normalization. 

5.5.2 Application to Stress-Time Plots. The simplified multiple output methodology 

was successfully demonstrated on the seven-class stress-time plot discrimination problem. 

The desired outputs were transformed and the resulting actual outputs were approximately 

uncorrelated. The resulting points produced a classifier more accurate than random points. 
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VI. Summary and Recommendations 

6.1   Summary 

The significant contribution of this research is the introduction of new concepts and 

methods to the field of neural network training. Neural networks learn based on accumulated 

experience contained in a finite sample of cases with known outcomes (training exemplars). 

Construction of a neural network has two goals. First, the network must extract useful infor- 

mation from the training exemplars. The second goal is accurate classification of unseen data. 

The selection of the training exemplars is crucial to the creation of an accurate discriminator. 

In this research, a statistically-based technique for selecting multilayer perceptron train- 

ing exemplars is developed. The technique selects these training exemplars so as to best 

estimate the multilayer perceptron weights. At the core of the methodology is a criterion 

which estimates the size of the confidence ellipsoid for the weights in the multilayer per- 

ceptron. Minimization of this criterion over sets of training exemplars defines where future 

experimentation should take place. Until now, only graphical and heuristic algorithms were 

available. 

The minimization of the criterion requires different methods depending on the whether 

the feature space is continuous or discrete. Powell's algorithm, a first order optimization 

method, is used for the continuous feature space and a discrete exchange algorithm is used for 

the discrete feature space. 

6.1.1 Single Output Multilayer Perceptrons. The single output method is shown em- 

pirically to produce more accurate classifiers than other data selection techniques. Specifically, 

multilayer perceptrons trained with exemplars determined by the design point criterion are 

more accurate than those trained with randomly selected exemplars. Additionally, exemplars 
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chosen in a "grid" or pattern produce less accurate classifiers than the exemplars chosen with 

the design points criterion. This "grid" pattern is often called a factorial design and is used 

quite extensively for linear models. The results here indicate that applying linear designs to 

circumstances where multilayer perceptrons are to be used may not be an effective strategy. 

Once a set of design points has been chosen, two methods of ranking design points are 

presented. One method ranks the points according to a simple dot product and the other uses 

a saliency measure. The dot product measure can be interpreted as the squared length of the 

gradient of the output with respect to the network weights evaluated at the design point under 

consideration. This measure can be shown to be equivalent to choosing the point at which 

the variance of the predicted response is at a maximum. The saliency measure was derived 

from the original saliency metric proposed by Ruck [57]. The new measure ranks exemplars 

according to the total change in the output due to changes in the inputs. Considered together, 

these measures provided a comprehensive picture of the importance of each of the chosen 

exemplars. The ranking methods were shown to result in the selection of the "best" design 

points. 

A large network can render a neural network method unusable. In this research, the 

complexity issue is successfully dealt with by introducing two simplifications which may 

be used if indicated. First, the distributed linear feedthrough (DLF) network adds linear 

connections to the traditional multilayer perceptron. The design point criterion is independent 

of the weights on these linear connections and, therefore, the criterion can be simplified. 

The DLF network has been applied previously. However, using the structure for reducing 

the complexity of determining design points is a new approach. A systematic procedure for 

assessing the amount of simplification possible is also introduced. 

The second method for simplifying the determination of the design points emphasizes 

only the lower layer weights, once again decreasing the computational complexity of the 
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criterion. The use of only a subset of the model parameters for selecting design points has 

been tried for very simple nonlinear models and the application to neural networks is an 

original approach. An indicator is derived which allows a user to judge if the method is 

appropriate. This indicator estimates the correlation between a criterion considering the lower 

layer weights and a criterion considering all the weights. In Chapter m, an example is used 

to illustrate the use of both the DLF network and the subset method and in each case, more 

accurate classifiers are developed as compared to randomly chosen exemplars. 

The final topic addressed for single output multilayer perceptrons is the effect of the 

initial weight vector on the method. It is shown that, as the number of initial exemplars 

increases (in other words, the more accurate the initial weight vector is), the benefit gained 

from the added design points decreases. An example was given in which the entire feature 

space was erroneously identified as one class. Design points were placed in a seemingly 

random pattern over the feature space, demonstrating the robustness of the method. 

6.1.2 Multiple Output Multilayer Perceptrons. Extending the single output method 

to address any number of classes, as expected, increases the complexity of the technique. The 

criterion is now weighted by the variance-covariance matrix of the outputs of the multilayer 

perceptron. If r is the number of outputs, then the multiple output criterion has r2 more terms. 

A four-class example problem illustrates the technique with all the terms of the criterion 

included. The exemplars chosen produce a more accurate classifier as compared to randomly 

selected points. To show that the technique can be applied iteratively, a second set of exemplars 

is chosen which further increases the accuracy of the multilayer perceptron. 

Previously, the discrete exchange algorithm was defined only for the univariate (single 

output) case [44]. Researchers in this area had not performed the required multivariate 

extension (namely calculating the effects on the criterion of adding a single multivariate 

exemplar to a given set of exemplars). In this research, that extension is theoretically derived. 
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Given the result, extension of the discrete exchange algorithm to handle multi-class problems 

is relatively effortless. 

Since the multiple output criterion depends on the elements of the variance-covariance 

of the outputs, reducing any of the elements in this matrix to zero reduces the number of 

terms in the criterion. By judiciously choosing the values of the desired outputs, one can 

cause the actual outputs to be approximately uncorrelated. (See Section 4.3.1.) Transforming 

the desired outputs requires a small change in how the outputs are interpreted. However, for 

the cases tested there was no degradation in performance. With the outputs uncorrelated, the 

variance-covariance matrix is diagonal and there are r terms in the criterion as opposed to r2. 

The approach is simple and can be implemented for discrimination problems with any number 

of classes. This simplification is applied to a four-class problem with results very similar to 

results obtained with the full criterion. 

6.1.3 Application of Methods To demonstrate the possible uses for the techniques 

developed, two application problems were used. The first discrimination problem predicts 

the performance of an armor piercing incendiary projectile striking composite materials. 

Four characteristics of the firing are used—thickness of the target, velocity of the projectile, 

mass of the projectile and the angle that the projectile strikes the target. Also discussed in 

this application are data and normalization considerations which must be dealt with in "real 

world" implementations. The full range of techniques developed for single output problems 

was exercised. In all cases, the newly developed techniques outperformed traditional methods 

of data selection. 

The second discrimination problem exercises the procedures developed for multiple 

output problems. Stress-time plots delineate seven regions where different levels of incendiary 

functioning occur. The simplified multiple output method was used to select design points for 

future experimentation resulting in an accurate classifier. 
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Multilayer perceptrons are currently being used by WL/FTVS. Until this research was 

accomplished, no definitive technique was available for planning experimentation as more 

composite materials became available. 

6.2   Recommendations 

There are related research topics which could not be adequately covered within the 

scope of this research effort. Research in these areas would benefit design of experiments 

methodologies specifically and the training of multilayer perceptrons in general. 

6.2.1 Ranking Methods for Training Sets. The first research topic is an extension of 

the ranking measures developed in Chapters m and IV. Rather than ranking only design points, 

it may be possible to rank order the exemplars for any subsequent training set and only train on 

the highly ranked vectors. A procedure such as this would be especially useful if one believes 

there are "useless" or "unimportant" vectors in the training set. Also, in cases where training 

time is limited, ranking exemplars would allow for training only on those vectors containing 

the most information. 

6.2.2 New Ranking Measure. The second research topic also concerns the ranking 

measures developed in Chapters m and IV. The first measure (Mi) ranks exemplars based 

on changes in the output with respect to changes in the weights, while the second measure 

(A42) ranks exemplars based on the changes in the output with respect to changes in the 

input exemplars. Some combination of these measures is required. This combination would 

identify exemplars that are "good" both in the weight-sense and in the feature-sense. Perhaps 

some mathematical connection between these measures can be defined, or the relationship 

may have to be heuristic. 
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6.2.3 Subset Criterion. Further investigation of the design of experiments emphasiz- 

ing a subset of the multilayer perceptron weights is required. It may be that only the lower 

layer weights are necessary for all single output problems. In addition, the subset method 

should be extended to the multiple output case. The benefit to be gained from this research is 

a major simplification of the design point criterion. 

6.2.4 Potential Extensions to Other Application Areas. This research barely scratched 

the surface of the potential application areas for the methodologies developed. Whenever a 

neural network user has control over the collection of training data, the data can be selected 

using these methods. Other areas where the procedure can be used need to be explored. It 

may also be possible to use the methods to reduce large sets of training data to smaller, more 

manageable, yet "information-rich" training sets. These potential uses should be investigated. 
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Appendix A. Experimental Design—Theorems and Definitions 

A.l   Proportionality of Volume of Confidence Region and \F.TF. \ 

Theorem 4 Let the measured response of the ith experiment be given by 

Hi = Vi + ei (I65) 

where r\i is the true response and the error e,- is normally distributed. Then, the volume of 
the confidence region in the parameter space is inversely proportional to the value of the 
determinant \F.TF.\. 

Proof: The boundary of an asymptotic confidence region for 9 with confidence coeffi- 

cient 1 — a is formed by [45] 

{9:{0- 6)TF.TF.{6 -e)= ps2Fa{p, v)} (166) 

Let A = F.TF. which is positive definite and 8 > 0. Then 

{0:{9- 9)TA(9 - 9) = S2} (167) 

represents an ellipsoid. This ellipsoid can be rotated so that its axes are parallel to the 

coordinate axes. The rotation is accomplished by an orthogonal matrix T where TTAT = 

diag(Ai, A2,.. •, Am) and the A* are the eigenvalues of A. 

Let (0 - 9) = Ty. Then, 

yTTTATy - \iy\ + X2y
2

2 + ... + Xmy2
m = S2 (168) 

Setting all the y^'s equal to zero except yr yields ar = -4= as the length of the rth semi-major 

axis, r = 1,.. .m. 
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The volume of the ellipsoid is then given by [59] 

7T 2 
a-yü2 ...am (169) 

r(f + i) 
ft 2 b 

r(f + i)0U< 
wfSm 

(170) 

(171) 
r(f+ i)|A|* 

oc    IAI-2 (172) 

So, minimizing the volume of the asymptotic confidence interval is equivalent to maximizing 

|A| = \F.TF.\ [59]. 

A .2    Correspondence of Generalized Inverse and | F.T F. \ 

Definition 1 The generalized variance ofp variables with variance-covariance matrix Cp is 
given by\Cp\ [62]. 

The estimate of the asymptotic variance-covariance matrix of 6 is given by (F.T F.) ~ -1 a2. 

Therefore, the generalized variance of the parameters is given by 

|CP|   =   |(F.TF.)~V| (173) 

=   CT
2
|(F.

T
F.)

_1
| (174) 

where <r2 is constant.  It is clear that minimizing the generalized variance is equivalent to 

minimizing |(F.TF.)-11, the suggested criterion. 

A3    Correspondence of\F.\ and Volume of Simplex in F. -Space 

First, it will be shown that the 2 x 2 determinant is the area of a certain parallelogram. 
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Definition 2 The quadrilateral with vertices O = (0,0), U = (u1}u2),V — (vi,v2) and 
W — (wi,w2) is a parallelogram if and only if 

wx = u\ + vi   and   w2 = u2 + v2,    that is   W — U + V (175) 

Use the symbol P(U, V) to denote the parallelogram with vertices 0, U, V, and U + V. Let 
M(U, V) denote the matrix with U and V as its rows: 

(176) 
Ui     u2 

M(U,V) = 
Vi    v2 

Lemma 1 1ft is any real number, then AreaP(U, V) = AreaP(U, V + tU) [60]. 

Proof: This lemma can be proved by the following facts 

1. P(U, V + tU) is the parallelogram with vertices O, U, V + tU and U + (V + tU). 

2. For any real number t, the point V + tU lies on the line L through V and U + V. This is 

so because tU = (tui,tU2) lies on the line M through O and U, and hence, the fourth 

vertex must be V + tU from the definition of a parallelogram. 

3. The two parallelograms P(U, V) and P(U, V + tU) share the same base and have the 

same height so their areas are the same. 

Theorem 5 AreaP(U, V) = ± det M(U, V) 

Proof: The reason that this result is true is that the row operations used to calculate the 

determinant do not change the area. More precisely, suppose u\ ^ 0. Choose t such that 

VT = V + tU lies on the vertical axis, i.e., vx + tut - 0. (See Figure 52.) Then from the 

lemma 

AreaP(U,V)   =   AreaP(C/,y + tU) 

det M(U,V)   =    detM(U,V + tU) (177) 
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Figure 52. Translation of Parallelogram to Rectangle 

Next, choose s so that UT = U + sVT lies on the horizontal axis. Then 

AreaP(£/,VT)   =   AreaP(£/ + sVT, VT) 

det M(U,VT)   =    detM(U + sVT,VT) (178) 

The new parallelogram P(UT, VT) is a rectangle with UT = (a, 0) and VT = (0, b) 

and we have 

AreaP(UT, VT) = ab = det M(UT, VT) (179) 
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Neither the area nor the determinant have changed, so: 

AreaP(i7,V) - AreaP{UT\VT) 

= det M{UT,VT) 

=   det M(U,V) (180) 

If ui = 0 and vx ^ 0 we can interchange U and V. A similar result holds when the 

angle from U to V is negative. 

In a similar manner, it can be shown that for any n x n matrix that the determinant is 

the volume of a certain parallelepiped. The volume of the simplex formed by the rows of the 

n x n matrix is proportional to the volume of this parallelepiped. This leads to the following 

theorem: 

Theorem 6 The value of\F.\ is proportional to the simplex formed by the origin and the p 
row vectors (experimental design points) in the F.-space. 

Particular attention must be paid to the fact that the elements of F. are the partial 

derivatives of the given nonlinear response function with respect to the individual parameters— 

not the design point space. Therefore, this result holds in the F. -space only. 
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Appendix B. Maximization of\F.TF.\ with the Augmentation of an 

Additional Design Point 

Theorem 7 Let Abe ap x p matrix and u a p x 1 column vector, then 

{A + uuT)'1 = A'1 - 
A~xuuT A'1 

1 + uTA-^u 
(181) 

Proof: The outline of the following proof is given by Dykstra [22]. First, multiply the 

equation on the right by (A + uuT) and simplify as follows 

{A^uui)-1(A + uu1) A-1 - ——7^-r-r- I {A + uuT) 

A~'A + A~iuu 
A

_1
MU

T
A

_1
A     A~1uuTA~1u",T 

-I„.„.T 

1 + uTA^u 1 + uTA- 

Then, since u1 A 1u is a scalar, 

I + A-1!«/ 

=   7-0 

i u+A^u)! 

l + v^A^u     l + uTA^u 

I + {uTA-lu)I -I- (vTA^u)! 
1 + v^A^u 

Theorem 8 Let Abe ap x p matrix and u ap x 1 column vector, then 

\A + uu1\ = |A|(l + uM_1u) 

(183) 

(184) 

Proo/: This proof is also outlined by Dykstra [22]. Multiply the result given in the 

theorem above on the right by A using (A + uuT — uuT) for the left hand side: 

(A + uu1)    (A + uu1 -uu1)   = V1 - A~luuTArl\ A 
,        l + t^A-1«; 
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I-(A + uur)-V   =   A-U-f^f^ 
U 

- >-£*k 
Then, 

T\_1        T ■"■      ^^ 

1 + uTA-!u 

(A + u/)-1 = 1   , A
Tyl_1 (186) 

1 + M
T
A-

1
U 

Taking determinants and remembering |A_1| = A? and |AB| = \BA\, 

1 1 1 
\A + uuT\ |A| 1 + t^A-1!* 

\A + uuT\   =   \A\(l + uTA-lu) (187) 
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Appendix C. Backpropagationfor Direct Linear Feedthrough (DLF) 

Networks 

This appendix will describe how a multilayer perceptron with a DLF structure can be 

trained using a slightly altered form of backpropagation. Figure 17 in Chapter m illustrates 

the weight connections in a DLF network. 

Let dsj denote the desired output value for the jth output node for the 5th exemplar 

and Zj denote the actual value for the jth output node for the sth exemplar. For a standard 

multilayer perceptron, zs- is determined by propagating exemplar s using sigmoidal activations 

at every layer. In the case of a DLF network, the sigmoidal activation at the output layer is 

not used and linear activations are included so that the output of a DLF network is: 

^ (total) = 2? (net) + ^(linear) (188) 

Let Zj (total) — zs-. Let total error be defined as 

E = EEl(d°-Z°)2 (189) 
*       3     Z 

It is this error that is to be minimized by changing the values of the weights. The changing 

of weights is implemented in traditional backpropagation networks using first-order gradient 

descent. The updated weight wfj can be written in terms of the previous weight as 

wf3 = w~3 + Awn (190) 

where 
dE 

Awl3 = -»?^— (191) 
OWij 
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To define the weight updates, ££- must be investigated further. Let w2
u be a particular 

weight in the upper layer. Then 

9E        _ d       (W1/^       ?s\2 
dw2

TJ dw2
TJ\

Z?2?2{j j- '13 UWIJ   \ s     j 

=   E^Q«"*)') (192) 

Note that when the partial is taken inside the sum over j that there is only one node of 

interest; the sum is therefore eliminated and the subscript is reduced to the particular J that 

the derivative is being taken with respect to. The derivative then becomes 

^ = -EM-?# (193) 

Now, look at a partial derivative for a particular weight in the second layer wjy. 

dz'T       9 [(£, wlx\' + ß) + (E* wkJx'k + C1 

dwjj dwjj 
(194) 

where x}s is the output of the zth node of the middle layer for the 5th exemplar. The derivative 

becomes 

d~Z'3  -x)s (195) 
dwjj 

and 
dE 

dwjj = -E(dJ-sj)xY (1%) 

Using the approximation to the total derivative of E found by computing this derivative 

for a given exemplar and calling this Es, the calculation required for weight update is 

dE 
°   s  = -(dj - Zj)xY (197) 
dwjj 
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Next, look at a particular weight in the lower layer wx
KI and follow the same approach 

as above. 

9E   -   V E £&-*?)' 
dwKI dwKl\sj2 

i 

3       3  dwKI    
3       3' 

-   -E»-^(E^
S
 + ^) (198) 

The only term in the sum over i that is affected by the derivative is when the index i = I. 

'i \ i i        % 

d 
t(?^ + «)   =   ¥^ 

-töH) 

OWKI  \ k I 

=   u£.z}'(l - x}8)^ (199) 

So the partial derivative of the error with respect to a weight in the first layer becomes 

#" = - E B<S - 2>W(1 - *}')** (200) 
«^A'l s      j 

Finally, look at a weight associated with one of the linear connections wj^j. 

dE d 
d<j dwL

KJ \ff ^ 2 EE^-^f 

ft 2"^ 

=   ~Udsj - Z
S
J)QZT- (201) 
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Now, the last partial derivative becomes 

dz% d f(Ei wlxY + ft) + (Efc ^jxt + CL) -j    ^_    

(202) 

since there is only a single term involving any particular linear weight. So the partial derivative 

of the error with respect to a linear weight becomes 

BE 
-YM - ?j)x'K (203) 

dwh 

The weight updates outlined above are summarized in the following DLF version of 

backpropagation: 

DLF Backpropagation 

1. Initialize weights and biases to small random values. 

2. Present training input and desired outputs. 

3. Calculate outputs. 

4. Adapt weights and biases according to 

dE 
dwi 

wtj = wij + Vjr- + "O;, - Wi,  ) (204) 

where 

dE 

dwij 

(dj — ZJ)X} for output node j 

x) (1 - xlj)xi J2k{dk - Zk)w%   f°r middle node j (205) 

(dj — Zj) Xi for linear weight from input i 
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Note that a momentum term has been added with a as the momentum rate, where u;,-,- is the 

old weight value and w~~ is the value of the weight before the last update. 

162 



Appendix D. List of Symbols 

n      Number of input nodes, dimensionality of exemplars 

N     Number of exemplars in the set of interest 

m      Number of middle nodes 

r        Number of otuput nodes and/or response functions 

xs     Input vector s,(s = 1,..., N) 

wit    Weight in first layer connecting input node k to middle node i 

(k — 1,.. .,n;i = 1,... m) 

wj-    Weight in second layer connecting middle node i to output node j 

(i = l,...,m;j = l,...r) 

£}      Bias from first layer to middle node i (i = 1,..., m) 

£j      Bias from second layer to output node j (j = 1,..., r) 

ds-      Desired output for output node j with the sth exemplar 

zs-      The multilayer perception outputs for the jth output node's 

value with the sth input pattern, or equivalently, the nonlinear regression 

for data vector xs with parameters w. 

z(xs;w) 

w      Vector of all the weights in a neural network (pxl) 

w      Estimate of w 

So     Output Error 

Ec      Classification Error 

Ak     Ruck Saliency measure for feature k 

ZU     Tarr saliency measure for feature k 

Ajk     Simplified saliency measure for feature k 

w^-   Weight in linear layer of DLF network connecting input node k to 

output node j (k = 1,..., n; j = 1,..., r) 
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£L Bias from input to output layer for DLF networks 

pDLF    jjjg form faai i^g matrix 0f ßrst partials takes when a DLF 

network is used 

pn The number of nonlinear parameters in a DLF network 

pi The number of linear parameters in a DLF network 

p Number of paramters (weights) 

F. Matrix of first partials 

F. (w)     N x p matrix of first partials 

8 Vector of parameters 

6* Represents true parameter vector 

0 Represents estimated parameter vector 

0 Shows functional dependedence in equations involving parameter vector 

C-1        {F^F.)-1 = {&} 

The terms c" are proportional to the variances of the estimated 

parameters Ö,- and c^(i ^ j) are proportional to the covariances 

D Design point criterion 

F. F.(w) or F.(6) 

(x,-, yi)    Data vectors in the description of nonlinear, single response 

regression model {i = 1,..., n) 

Vi f(xi;9*) + £i 

Nonlinear, single response model (i = 1,..., n) 

0* p x 1 vector of true parameters 

S(6)       Error sum of squares function for the single response model 

MO)     /(*;*) 
For single response, nonlinear function 

t($)     (f1(6)j2(e),...jN(e))T 

Vector of actual responses from the model given 9 and N data vectors 
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For the single response case 

e In the single response model, the vector of errors, E[ei\ = 0 and e, 

are i.i.d with variance a2 

C F. F. 

° N-p 

Estimator for a2, the error variance 

y; f (x,-; 0) + e 

Nonlinear multi-response model (i = l,...N) 

yi r x 1 vector of responses for the ith data vector in 

the multi-response model 

e In the multi-response model, ii.d. with mean 0 and variance- 

covariance matrix X 

f,-(0)    f(x,-;ö) 

In multi-response model 

T{6)     Error sum of squares function for multi-response model 

fi-1      S-1 <g> IN 

Where ® is the Kroneker product (Nr x iW) 

ars       Estimated value of (r, s) element of E 

e i 

F.{6) 

y(i)_f(i)(ö),j = l,...r 

Estimated error for response model j 

S Estimate of S, the variance-covariance matrix of the error 

W'1     Estimate of the variance-covariance matrix of the parameters in the 

multi-response case (p x p) 

W        ^(ÖXS-1 ® IN)F.(0) 

Multi-response matrix of first partials 
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F.j(0) The usual matrix of first partials for the jth model 

(See F.{6) for single response model) 

Tj Represents the response for some known function (rj = /(x; 0), for example) 

H Region of operability in the feature space 

N0 hi a sequential design approach, N0 is the number of initial observations 

i.i One row of F. for the z'th data vector 

Vij EfLi (Vis - /,-(x,; 0)) (yjs - /j(xs; 0)), i,j = l,...,r 

yf (yu,y2s,---yds),s = l,...,N 

Vis yis       JiyX-ui v) 

f (t) (dMx.;0)\ 
J-is \      d9t      J0=d 

(0i \02)
T Division of parameter vector into subsets where 0i is q x 1 and 02 is u x 1 

A41 Dot product measure for ranking exemplars 

M2 Saliency measure for ranking exemplars 
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